Multiphase Image Segmentation and Modulation Recovery Based on Shape and Topological Sensitivity

Topological sensitivity analysis is performed for the piecewise constant Mumford-Shah functional. Topological and shape derivatives are combined in order to derive an algorithm for image segmentation with fully automatized initialization. Segmentation of 2D and 3D data is presented. Further, a generalized Mumford-Shah functional is proposed and numerically investigated for the segmentation of images modulated due to, e.g., coil sensitivities.

[1]  Jan Sokolowski,et al.  On the Topological Derivative in Shape Optimization , 1999 .

[2]  L. Vese,et al.  A level set algorithm for minimizing the Mumford-Shah functional in image processing , 2001, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision.

[3]  Michael Hintermüller,et al.  A Second Order Shape Optimization Approach for Image Segmentation , 2004, SIAM J. Appl. Math..

[4]  Stephen L. Keeling,et al.  A variational approach to magnetic resonance coil sensitivity estimation , 2004, Appl. Math. Comput..

[5]  Marko Subasic,et al.  Level Set Methods and Fast Marching Methods , 2003 .

[6]  Jan Sokolowski,et al.  Introduction to shape optimization , 1992 .

[7]  Lin He,et al.  Solving the Chan-Vese Model by a Multiphase Level Set Algorithm Based on the Topological Derivative , 2007, SSVM.

[8]  Matthew MacDonald,et al.  Shapes and Geometries , 1987 .

[9]  Antoine Henrot,et al.  Variation et optimisation de formes : une analyse géométrique , 2005 .

[10]  Stephen J. Wright Primal-Dual Interior-Point Methods , 1997, Other Titles in Applied Mathematics.

[11]  V. Maz'ya,et al.  Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains: Volume I , 2000 .

[12]  W. Ziemer Weakly differentiable functions , 1989 .

[13]  P. Rousseeuw,et al.  Wiley Series in Probability and Mathematical Statistics , 2005 .

[14]  Tony F. Chan,et al.  A Multiphase Level Set Framework for Image Segmentation Using the Mumford and Shah Model , 2002, International Journal of Computer Vision.

[15]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[16]  S. Osher,et al.  Regular Article: A PDE-Based Fast Local Level Set Method , 1999 .

[17]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[18]  Jean-Michel Morel,et al.  Variational methods in image segmentation , 1995 .

[19]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[20]  S. Osher,et al.  A PDE-Based Fast Local Level Set Method 1 , 1998 .

[21]  Antoine Henrot,et al.  Variation et optimisation de formes , 2005 .

[22]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[23]  Mariano Giaquinta,et al.  Introduction to Regularity Theory for Nonlinear Elliptic Systems , 1993 .

[24]  John A. Hartigan,et al.  Clustering Algorithms , 1975 .

[25]  M. Delfour,et al.  Shapes and Geometries: Analysis, Differential Calculus, and Optimization , 1987 .

[26]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[27]  J. Sethian,et al.  FRONTS PROPAGATING WITH CURVATURE DEPENDENT SPEED: ALGORITHMS BASED ON HAMILTON-JACOB1 FORMULATIONS , 2003 .

[28]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[29]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[30]  D. Preiss,et al.  WEAKLY DIFFERENTIABLE FUNCTIONS (Graduate Texts in Mathematics 120) , 1991 .

[31]  W. Hackbusch Elliptic Differential Equations , 1992 .

[32]  T. Chan,et al.  A Variational Level Set Approach to Multiphase Motion , 1996 .