Resilience of all-carbon molecules C60, C70, and C84: A surface-scattering time-of-flight investigation

Ion beam scattering experiments on the larger carbon molecules (C{sub 60}{sup {plus minus}}, C{sub 70}{sup +} C{sub 80}{sup +}) demonstrate their exceptionally high stability with respect to impact-induced fragmentation processes. The charged molecules are formed by ultraviolet laser desorption of high purity molecular samples into a pulsed helium jet. Extracted ions impact Si(100) or graphite (0001) in a high-resolution ion beam/surface collider with mass time-of-flight and angular analysis. Collisions are highly inelastic processes: a large fraction of the entire perpendicular momentum component is lost, and 60 {plus minus} 20% of the component is either lost or exchanged. No more than 10% of the incident ions are returned, which is attributed to neutralization during the collision event. In contrast to all molecular ions (benzene and naphthalene cations) and cluster (alkali-metal halides), these molecules exhibit no evidence for impact-induced fragmentation, even at impact energies exceeding 200 eV. In the case of C{sub 60}{sup {minus}}, both the intact parent ion and ejected electrons are detected, with the latter becoming dominant above 120 eV impact energy. C{sub 60}{sup +} is found to have an exceptionally low energy threshold for inducing sputtering processes of adsorbed overlayers on graphite. Some of these results may be interpretablemore » in terms of the unique structural-energetic characteristics of the fullerene family. The results are compared to recent computer simulations of the impact event, which predict high resilience for these molecules.« less