Relativistic all-electron molecular dynamics simulations.

The scalar-relativistic Douglas-Kroll-Hess method is implemented in the Born-Oppenheimer molecular dynamics simulation package CP2K. Using relativistic densities in a nonrelativistic gradient routine is found to be a valid approximation of relativistic gradients. An excellent agreement between optimized structures and geometries obtained from numerical gradients is observed with an error smaller than 0.02 pm. Hydrogen halide dimers [(HX)(2), with X = F, Cl, Br, I] serve as small test systems for first-principles molecular dynamics simulations. Relativistic effects are observed. That is, the amplitude of motion is larger, the frequency of motion is smaller, and the distances are larger in the relativistic picture. Several localization schemes are evaluated for different interatomic and intermolecular distances. The errors of these localization schemes are small for geometries which are similar to the equilibrium structure. They become larger for smaller distances, introducing a slight bias toward closed packed configurations.

[1]  A. Pine,et al.  High resolution spectrum of the HCl dimer , 1984 .

[2]  Robert J. Harrison,et al.  Parallel Douglas-Kroll Energy and Gradients in NWChem. Estimating Scalar Relativistic Effects Using Douglas-Kroll Contracted Basis Sets. , 2001 .

[3]  A. McIntosh,et al.  Near-infrared spectra and rovibrational dynamics on a four-dimensional ab initio potential energy surface of (HBr)2. , 2004, The Journal of chemical physics.

[4]  Z. Bačić,et al.  Exact six-dimensional quantum calculations of the rovibrational levels of (HCl)2 , 1997 .

[5]  Kimihiko Hirao,et al.  The higher-order Douglas–Kroll transformation , 2000 .

[6]  A. Szabo,et al.  Modern quantum chemistry , 1982 .

[7]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[8]  Mark E. Tuckerman,et al.  A reciprocal space based method for treating long range interactions in ab initio and force-field-based calculations in clusters , 1999 .

[9]  Christoph van Wüllen,et al.  Accurate and efficient treatment of two-electron contributions in quasirelativistic high-order Douglas-Kroll density-functional calculations. , 2005, The Journal of chemical physics.

[10]  F. Neese,et al.  Calculation of electric-field gradients based on higher-order generalized Douglas-Kroll transformations. , 2005, The Journal of chemical physics.

[11]  Shigeru Obara,et al.  Efficient recursive computation of molecular integrals over Cartesian Gaussian functions , 1986 .

[12]  N. Rösch,et al.  Atomic approximation to the projection on electronic states in the Douglas-Kroll-Hess approach to the relativistic Kohn-Sham method. , 2008, The Journal of chemical physics.

[13]  Michele Parrinello,et al.  On the Quantum Nature of the Shared Proton in Hydrogen Bonds , 1997, Science.

[14]  M. Reiher,et al.  Correlated ab initio calculations of spectroscopic parameters of SnO within the framework of the higher-order generalized Douglas-Kroll transformation. , 2004, The Journal of chemical physics.

[15]  Hess,et al.  Relativistic electronic-structure calculations employing a two-component no-pair formalism with external-field projection operators. , 1986, Physical review. A, General physics.

[16]  Stefan Grimme,et al.  Accurate description of van der Waals complexes by density functional theory including empirical corrections , 2004, J. Comput. Chem..

[17]  B. Schimmelpfennig,et al.  Reduction of uranyl by hydrogen: an ab initio study , 1999 .

[18]  J. H. Zhang,et al.  Six-dimensional quantum calculations of vibration-rotation-tunneling levels of ν1 and ν2 HCl-stretching excited (HCl)2 , 1998 .

[19]  Adrian M. Simper,et al.  A two-centre implementation of the Douglas-Kroll transformation in relativistic calculations , 1998 .

[20]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[21]  R. Zahradník,et al.  (HX)2 SPECIES (X=F THROUGH AT) IN THE GROUPS OF THE PERIODIC SYSTEM : MP2 AND CCSD(T) AB INITIO QUANTUM CHEMICAL CALCULATIONS , 1998 .

[22]  Marcella Iannuzzi,et al.  Inner-shell spectroscopy by the Gaussian and augmented plane wave method. , 2007, Physical chemistry chemical physics : PCCP.

[23]  Hans W. Horn,et al.  ELECTRONIC STRUCTURE CALCULATIONS ON WORKSTATION COMPUTERS: THE PROGRAM SYSTEM TURBOMOLE , 1989 .

[24]  J. Thar,et al.  Car–Parrinello Molecular Dynamics Simulations and Biological Systems , 2006 .

[25]  Evert Jan Baerends,et al.  Relativistic regular two‐component Hamiltonians , 1993 .

[26]  Markus Reiher,et al.  Exact decoupling of the Dirac Hamiltonian. I. General theory. , 2004, The Journal of chemical physics.

[27]  Ivano Tavernelli,et al.  Optimization of effective atom centered potentials for london dispersion forces in density functional theory. , 2004, Physical review letters.

[28]  Teter,et al.  Separable dual-space Gaussian pseudopotentials. , 1996, Physical review. B, Condensed matter.

[29]  Dong H. Zhang,et al.  Vibrational predissociation of HF dimer in νHF=1: Influence of initially excited intermolecular vibrations on the fragmentation dynamics , 1995 .

[30]  J. G. Snijders,et al.  Gradients in the ab initio scalar zeroth-order regular approximation (ZORA) approach , 2000 .

[31]  C. Wüllen Relation between different variants of the generalized Douglas-Kroll transformation through sixth order , 2004 .

[32]  Ursula Rothlisberger,et al.  The role and perspective of ab initio molecular dynamics in the study of biological systems. , 2002, Accounts of chemical research.

[33]  Juan E Peralta,et al.  Scalar relativistic all-electron density functional calculations on periodic systems. , 2005, The Journal of chemical physics.

[34]  Notker Rösch,et al.  Linear response formalism for the Douglas–Kroll–Hess approach to the Dirac–Kohn–Sham problem: First‐ and second‐order nuclear displacement derivatives of the energy , 2007 .

[35]  L. Foldy,et al.  On the Dirac Theory of Spin 1/2 Particles and Its Non-Relativistic Limit , 1950 .

[36]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[37]  B. A. Hess,et al.  The two-electron terms of the no-pair Hamiltonian , 1992 .

[38]  Matthias Krack,et al.  All-electron ab-initio molecular dynamics , 2000 .

[39]  Roland Lindh,et al.  Analytic high-order Douglas-Kroll-Hess electric field gradients. , 2007, The Journal of chemical physics.

[40]  Notker Rösch,et al.  Density functional based structure optimization for molecules containing heavy elements: analytical energy gradients for the Douglas-Kroll-Hess scalar relativistic approach to the LCGTO-DF method , 1996 .

[41]  Markus Reiher,et al.  The generalized Douglas–Kroll transformation , 2002 .

[42]  Markus Reiher,et al.  Douglas–Kroll–Hess Theory: a relativistic electrons-only theory for chemistry , 2006 .

[43]  Roland Lindh,et al.  Main group atoms and dimers studied with a new relativistic ANO basis set , 2004 .

[44]  Marvin Douglas,et al.  Quantum electrodynamical corrections to the fine structure of helium , 1971 .

[45]  M. Klein,et al.  Nosé-Hoover chains : the canonical ensemble via continuous dynamics , 1992 .

[46]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[47]  Markus Reiher,et al.  Exact decoupling of the Dirac Hamiltonian. II. The generalized Douglas-Kroll-Hess transformation up to arbitrary order. , 2004, The Journal of chemical physics.

[48]  R. Ahlrichs,et al.  Contracted all-electron Gaussian basis sets for atoms Rb to Xe , 2000 .

[49]  James T. Hynes,et al.  A Molecular Jump Mechanism of Water Reorientation , 2006, Science.

[50]  F. Neese,et al.  Theoretical bioinorganic chemistry: the electronic structure makes a difference. , 2007, Current opinion in chemical biology.

[51]  W. Klemperer,et al.  The molecular beam spectrum and the structure of the hydrogen fluoride dimer , 1984 .

[52]  R. Rogers,et al.  The coordination chemistry of actinides in ionic liquids: A review of experiment and simulation , 2006 .

[53]  Markus Reiher,et al.  Exact decoupling of the Dirac Hamiltonian. IV. Automated evaluation of molecular properties within the Douglas-Kroll-Hess theory up to arbitrary order. , 2006, The Journal of chemical physics.

[54]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[55]  Dong H. Zhang,et al.  Exact full‐dimensional bound state calculations for (HF)2, (DF)2, and HFDF , 1995 .

[56]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[57]  A. Schäfer,et al.  Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr , 1994 .