General Adaptive Neighborhood Image Processing

The so-called General Adaptive Neighborhood Image Processing (GANIP) approach is presented in a two parts paper dealing respectively with its theoretical and practical aspects. The General Adaptive Neighborhood (GAN) paradigm, theoretically introduced in Part I [20], allows the building of new image processing transformations using context-dependent analysis. With the help of a specified analyzing criterion, such transformations perform a more significant spatial analysis, taking intrinsically into account the local radiometric, morphological or geometrical characteristics of the image. Moreover they are consistent with the physical and/or physiological settings of the image to be processed, using general linear image processing frameworks.In this paper, the GANIP approach is more particularly studied in the context of Mathematical Morphology (MM). The structuring elements, required for MM, are substituted by GAN-based structuring elements, fitting to the local contextual details of the studied image. The resulting morphological operators perform a really spatially-adaptive image processing and notably, in several important and practical cases, are connected, which is a great advantage compared to the usual ones that fail to this property.Several GANIP-based results are here exposed and discussed in image filtering, image segmentation, and image enhancement. In order to evaluate the proposed approach, a comparative study is as far as possible proposed between the adaptive and usual morphological operators. Moreover, the interests to work with the Logarithmic Image Processing framework and with the ‘contrast’ criterion are shown through practical application examples.

[1]  R M Rangayyan,et al.  Adaptive-neighborhood filtering of images corrupted by signal-dependent noise. , 1998, Applied optics.

[2]  Shmuel Peleg,et al.  PICTURES AS ELEMENTS IN VECTOR SPACE. , 1983, CVPR 1983.

[3]  Ulisses De Mendonça Braga Neto,et al.  Alternating Sequential Filters by Adaptive-Neighborhood Structuring Functions , 1996 .

[4]  Jae S. Lim,et al.  Two-Dimensional Signal and Image Processing , 1989 .

[5]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[6]  J. Pinoli,et al.  Justifications physiques et applications du modèle LIP pour le traitement des images obtenues en lumière transmise , 1996 .

[7]  Ioannis Pitas,et al.  Nonlinear Digital Filters - Principles and Applications , 1990, The Springer International Series in Engineering and Computer Science.

[8]  Ulisses Braga-Neto,et al.  Alternating Sequential Filters by Adaptive-Neighborhood Structuring Functions , 1996, ISMM.

[9]  Maryellen L. Giger,et al.  Evaluating the EM algorithm for image processing using a human visual fidelity criterion , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[10]  William A. Pearlman,et al.  Restoration Of Noisy Images With Adaptive Windowing And Nonlinear Filtering , 1986, Other Conferences.

[11]  Joseph N. Wilson,et al.  Handbook of computer vision algorithms in image algebra , 1996 .

[12]  J. Michel,et al.  Logarithmic image processing: additive contrast, multiplicative contrast, and associated metrics , 2001 .

[13]  Jacques Verly,et al.  Some principles and applications of adaptive mathematical morphology for range imagery , 1993 .

[14]  安藤 広志,et al.  20世紀の名著名論:David Marr:Vision:a Computational Investigation into the Human Representation and Processing of Visual Information , 2005 .

[15]  A. Oppenheim SUPERPOSITION IN A CLASS OF NONLINEAR SYSTEMS , 1965 .

[16]  Steven C. Dakin,et al.  The spatial mechanisms mediating symmetry perception , 1997, Vision Research.

[17]  Sanjit K. Mitra,et al.  Nonlinear unsharp masking methods for image contrast enhancement , 1996, J. Electronic Imaging.

[18]  Gonzalo R. Arce,et al.  Detail-preserving ranked-order based filters for image processing , 1989, IEEE Trans. Acoust. Speech Signal Process..

[19]  Petros Maragos,et al.  Morphological filters-Part I: Their set-theoretic analysis and relations to linear shift-invariant filters , 1987, IEEE Trans. Acoust. Speech Signal Process..

[20]  J. Pinoli Contribution a la modelisation, au traitement et a l'analyse d'image , 1987 .

[21]  Jean-Charles Pinoli,et al.  Image dynamic range enhancement and stabilization in the context of the logarithmic image processing model , 1995, Signal Process..

[22]  A. Venetsanopoulos,et al.  Order statistics in digital image processing , 1992, Proc. IEEE.

[23]  Mihai Ciuc Traitement d'images multicomposantes : application à l'imagerie couleur et radar , 2002 .

[24]  Azriel Rosenfeld,et al.  Picture Processing by Computer , 1969, CSUR.

[25]  Rangaraj M. Rangayyan,et al.  Adaptive neighborhood mean and median image filtering , 1994, J. Electronic Imaging.

[26]  Jean-Charles Pinoli,et al.  Multiscale image filtering and segmentation by means of adaptive neighborhood mathematical morphology , 2005, IEEE International Conference on Image Processing 2005.

[27]  Jean-Charles Pinoli,et al.  The Logarithmic Image Processing Model: Connections with Human Brightness Perception and Contrast Estimators , 1997, Journal of Mathematical Imaging and Vision.

[28]  Serge Beucher,et al.  Use of watersheds in contour detection , 1979 .

[29]  Jr. Thomas G. Stockham,et al.  Image processing in the context of a visual model , 1972 .

[30]  M. Jourlin,et al.  Logarithmic image processing: The mathematical and physical framework for the representation and processing of transmitted images , 2001 .

[31]  D.J. Granrath,et al.  The role of human visual models in image processing , 1981, Proceedings of the IEEE.

[32]  R M Rangayyan,et al.  Feature enhancement of film mammograms using fixed and adaptive neighborhoods. , 1984, Applied optics.

[33]  Kristel Michielsen,et al.  Morphological image analysis , 2000 .

[34]  Jaakko Astola,et al.  An Introduction to Nonlinear Image Processing , 1994 .

[35]  Philippe Salembier,et al.  Connected operators and pyramids , 1993, Optics & Photonics.

[36]  Guang Deng,et al.  Multiscale image enhancement using the logarithmic image processing model , 1993 .

[37]  Rangaraj M. Rangayyan,et al.  Adaptive-neighborhood image deblurring , 1994, J. Electronic Imaging.

[38]  Dan Schonfeld,et al.  Spatially-variant mathematical morphology , 1994, Proceedings of 1st International Conference on Image Processing.

[39]  Luc Vincent,et al.  Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[40]  Michaël Ropert,et al.  Synthesis of Adaptive Weighted Order Statistic Filters with Gradient Algorithms , 1994, ISMM.

[41]  Etienne Decencière,et al.  Image filtering using morphological amoebas , 2007, Image Vis. Comput..

[42]  J. T. Stockham The application of generalized linearity to automatic gain control , 1968 .

[43]  Jong-Sen Lee,et al.  Refined filtering of image noise using local statistics , 1981 .

[44]  Jean-Charles Pinoli,et al.  A model for logarithmic image processing , 1988 .

[45]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[46]  M Jourlin,et al.  Contrast definition and contour detection for logarithmic images , 1989, Journal of microscopy.

[47]  John Edward Hafstrom Introduction to analysis and abstract algebra , 1967 .

[48]  A. Oppenheim,et al.  Nonlinear filtering of multiplied and convolved signals , 1968 .

[49]  M. Wertheimer Laws of organization in perceptual forms. , 1938 .

[50]  P. W. Hawkes IMAGE ALGEBRA AND RANK-ORDER FILTERS , 2003 .

[51]  Rangaraj M. Rangayyan,et al.  Filtering multiplicative noise in images using adaptive region-based statistics , 1998, J. Electronic Imaging.

[52]  Jitendra Malik,et al.  Scale-Space and Edge Detection Using Anisotropic Diffusion , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[53]  G. X. Ritter,et al.  Recent Developments in Image Algebra , 1991 .

[54]  Corinne Vachier Morphological scale-space analysis and feature extraction , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[55]  T. Lindeberg,et al.  Scale-Space Theory : A Basic Tool for Analysing Structures at Different Scales , 1994 .

[56]  Rangaraj M. Rangayyan,et al.  Adaptive-neighborhood histogram equalization of color images , 2001, J. Electronic Imaging.

[57]  Jim Hefferon,et al.  Linear Algebra , 2012 .

[58]  L. Shen,et al.  Linear Algebra , 1968 .

[59]  Jean-Charles Pinoli,et al.  General Adaptive Neighborhood Image Processing: , 2006, Journal of Mathematical Imaging and Vision.

[60]  J. Schwartz,et al.  Linear Operators. Part I: General Theory. , 1960 .

[61]  Stéphane Mallat,et al.  A Theory for Multiresolution Signal Decomposition: The Wavelet Representation , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[62]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[63]  G. Matheron Éléments pour une théorie des milieux poreux , 1967 .

[64]  J. Astola,et al.  Fundamentals of Nonlinear Digital Filtering , 1997 .

[65]  William F. Schreiber,et al.  Fundamentals of electronic imaging systems : some aspects of image processing , 1986 .

[66]  A.K. Jain,et al.  Advances in mathematical models for image processing , 1981, Proceedings of the IEEE.

[67]  Petros Maragos,et al.  Morphological filters-Part II: Their relations to median, order-statistic, and stack filters , 1987, IEEE Trans. Acoust. Speech Signal Process..

[68]  M Jourlin,et al.  LIP‐model‐based three‐dimensional reconstruction and visualization of HIV‐infected entire cells , 1994, Journal of microscopy.

[69]  Robert C. Vogt A Spatially Variant, Locally Adaptive, Background Normalization Operator , 1994, ISMM.

[70]  Guang Deng,et al.  Differentiation-Based Edge Detection Using the Logarithmic Image Processing Model , 1998, Journal of Mathematical Imaging and Vision.

[71]  M. Nagao,et al.  Edge preserving smoothing , 1979 .

[72]  Alan V. Oppenheim,et al.  Generalized Superposition , 1967, Information and Control.

[73]  Philippe Salembier,et al.  Flat zones filtering, connected operators, and filters by reconstruction , 1995, IEEE Trans. Image Process..

[74]  Jean-Charles Pinoli,et al.  A general comparative study of the multiplicative homomorphic, log-ratio and logarithmic image processing approaches , 1997, Signal Process..

[75]  José Crespo,et al.  Theoretical aspects of morphological filters by reconstruction , 1995, Signal Process..

[76]  J. Pinoli A contrast definition for logarithmic images in the continuous setting , 1991 .

[77]  David Marr,et al.  VISION A Computational Investigation into the Human Representation and Processing of Visual Information , 2009 .

[78]  P. Lions,et al.  Axioms and fundamental equations of image processing , 1993 .

[79]  Rangaraj M. Rangayyan,et al.  Filtering noise in color images using adaptive-neighborhood statistics , 2000, J. Electronic Imaging.

[80]  Henk J. A. M. Heijmans,et al.  Algebraic Framework for Linear and Morphological Scale-Spaces , 2002, J. Vis. Commun. Image Represent..

[81]  Petros Maragos,et al.  Experiments on Image Compression Using Morphological Pyramids , 1989, Other Conferences.

[82]  Philippe Salembier Structuring element adaptation for morphological filters , 1992, J. Vis. Commun. Image Represent..

[83]  G. R. Tobin,et al.  The study of logarithmic image processing model and its application to image enhancement , 1995, IEEE Trans. Image Process..

[84]  J. N. Wilson,et al.  Image Algebra: An Overview , 1990, Comput. Vis. Graph. Image Process..

[85]  Shmuel Peleg,et al.  Inversion of picture operators , 1987, Pattern Recognit. Lett..

[86]  Olivier Cuisenaire Locally adaptable mathematical morphology , 2005, IEEE International Conference on Image Processing 2005.