Efficient manufacturing processes and performance qualification via active learning: Application to a cylindrical plunge grinding platform

[1]  Francis J. Doyle,et al.  Estimating confidence intervals in predicted responses for oscillatory biological models , 2013, BMC Systems Biology.

[2]  Peter A. J. Hilbers,et al.  A Bayesian approach to targeted experiment design , 2012, Bioinform..

[3]  Barbara Linke Grinding Wheel Macro-design—Shape, Body, and Qualification , 2016 .

[4]  Habib N. Najm,et al.  Uncertainty Quantification and Polynomial Chaos Techniques in Computational Fluid Dynamics , 2009 .

[5]  Shlomo Argamon,et al.  Committee-Based Sample Selection for Probabilistic Classifiers , 1999, J. Artif. Intell. Res..

[6]  Simon R. Phillpot,et al.  Uncertainty Quantification in Multiscale Simulation of Materials: A Prospective , 2013 .

[7]  Donald R. Jones,et al.  Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..

[8]  Jens Timmer,et al.  Likelihood based observability analysis and confidence intervals for predictions of dynamic models , 2011, BMC Systems Biology.

[9]  Peng Qiu,et al.  Optimal experiment selection for parameter estimation in biological differential equation models , 2012, BMC Bioinformatics.

[10]  Blas Galván,et al.  Application of Dempster-Shafer theory for the quantification and propagation of the uncertainty caused by the use of AIS data , 2013, Reliab. Eng. Syst. Saf..

[11]  Xiaoning Qian,et al.  Autonomous efficient experiment design for materials discovery with Bayesian model averaging , 2018, Physical Review Materials.

[12]  Edward R. Dougherty,et al.  Optimal Experimental Design for Gene Regulatory Networks in the Presence of Uncertainty , 2015, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[13]  John J. Lewandowski,et al.  Overview of Materials Qualification Needs for Metal Additive Manufacturing , 2016 .

[14]  H. Sebastian Seung,et al.  Query by committee , 1992, COLT '92.

[15]  Erica R.H. Fuchs,et al.  Metal Additive Manufacturing: Cost Competitive Beyond Low Volumes , 2017 .

[16]  Cynthia Rudin,et al.  Prediction uncertainty and optimal experimental design for learning dynamical systems. , 2015, Chaos.

[17]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[18]  Harold J. Kushner,et al.  A New Method of Locating the Maximum Point of an Arbitrary Multipeak Curve in the Presence of Noise , 1964 .

[19]  Satish T. S. Bukkapatnam,et al.  Experimental Characterization of Nonlinear Dynamics Underlying the Cylindrical Grinding Process , 2004 .

[20]  Satish T. S. Bukkapatnam,et al.  Process-machine interactions and a multi-sensor fusion approach to predict surface roughness in cylindrical plunge grinding process , 2018 .

[21]  Emanuel Aldea,et al.  Evidential query-by-committee active learning for pedestrian detection in high-density crowds , 2019, Int. J. Approx. Reason..

[22]  Warren B. Powell,et al.  A Knowledge-Gradient Policy for Sequential Information Collection , 2008, SIAM J. Control. Optim..

[23]  Philipp Hennig,et al.  Entropy Search for Information-Efficient Global Optimization , 2011, J. Mach. Learn. Res..

[24]  H. Wynn,et al.  Maximum entropy sampling and optimal Bayesian experimental design , 2000 .

[25]  Matthew W. Hoffman,et al.  Predictive Entropy Search for Efficient Global Optimization of Black-box Functions , 2014, NIPS.

[26]  D. Meeter,et al.  Sequential Experimental Design Procedures , 1973 .

[27]  Jonas Mockus,et al.  On Bayesian Methods for Seeking the Extremum , 1974, Optimization Techniques.

[28]  Mike Sargent,et al.  The development and application of guidance on equipment qualification of analytical instruments , 1996 .