Graph Partitioning Using Matrix Values for Preconditioning Symmetric Positive Definite Systems

Prior to the parallel solution of a large linear system, it is required to perform a partitioning of its equations/unknowns. Standard partitioning algorithms are designed using the considerations of the efficiency of the parallel matrix-vector multiplication, and typically disregard the information on the coefficients of the matrix. This information, however, may have a significant impact on the quality of the preconditioning procedure used within the chosen iterative scheme. In the present paper, we suggest a spectral partitioning algorithm, which takes into account the information on the matrix coefficients and constructs partitions with respect to the objective of enhancing the quality of the nonoverlapping additive Schwarz (block Jacobi) preconditioning for symmetric positive definite linear systems. For a set of test problems with large variations in magnitudes of matrix coefficients, our numerical experiments demonstrate a noticeable improvement in the convergence of the resulting solution scheme wh...

[1]  George Karypis,et al.  Multilevel k-way Partitioning Scheme for Irregular Graphs , 1998, J. Parallel Distributed Comput..

[2]  Shang-Hua Teng,et al.  Spectral partitioning works: planar graphs and finite element meshes , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[3]  Bruce Hendrickson,et al.  A Multi-Level Algorithm For Partitioning Graphs , 1995, Proceedings of the IEEE/ACM SC95 Conference.

[4]  Tamara G. Kolda,et al.  Graph partitioning models for parallel computing , 2000, Parallel Comput..

[5]  Masha Sosonkina,et al.  Non-standard Parallel Solution Strategies for Distributed Sparse Linear Systems , 1999, ACPC.

[6]  Jacques Periaux,et al.  On Domain Decomposition Methods , 1988 .

[7]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[8]  R. M. Mattheyses,et al.  A Linear-Time Heuristic for Improving Network Partitions , 1982, 19th Design Automation Conference.

[9]  Brian W. Kernighan,et al.  An efficient heuristic procedure for partitioning graphs , 1970, Bell Syst. Tech. J..

[10]  Bruce Hendrickson,et al.  The Chaco user`s guide. Version 1.0 , 1993 .

[11]  Gary L. Miller,et al.  Automatic Mesh Partitioning , 1992 .

[12]  Daniel B. Szyld,et al.  Extensions of Certain Graph-based Algorithms for Preconditioning , 2007, SIAM J. Sci. Comput..

[13]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[14]  Bruce Hendrickson,et al.  An Improved Spectral Graph Partitioning Algorithm for Mapping Parallel Computations , 1995, SIAM J. Sci. Comput..

[15]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[16]  Hua Xiang,et al.  Algebraic Domain Decomposition Methods for Highly Heterogeneous Problems , 2013, SIAM J. Sci. Comput..

[17]  C. Walshaw JOSTLE : parallel multilevel graph-partitioning software – an overview , 2008 .

[18]  Yousef Saad,et al.  Heuristic Algorithms for Automatic Graph Partitioning , 1995 .

[19]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[20]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[21]  M. Fiedler A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory , 1975 .

[22]  Chris H. Q. Ding,et al.  A min-max cut algorithm for graph partitioning and data clustering , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[23]  Barry F. Smith,et al.  Domain Decomposition: Parallel Multilevel Methods for Elliptic Partial Differential Equations , 1996 .

[24]  M. Fiedler Algebraic connectivity of graphs , 1973 .

[25]  Alex Pothen,et al.  PARTITIONING SPARSE MATRICES WITH EIGENVECTORS OF GRAPHS* , 1990 .

[26]  Jan Mandel,et al.  Adaptive BDDC in three dimensions , 2009, Math. Comput. Simul..

[27]  A. Hoffman,et al.  Lower bounds for the partitioning of graphs , 1973 .

[28]  Andrea Toselli,et al.  Domain decomposition methods : algorithms and theory , 2005 .

[29]  B. Parlett The Symmetric Eigenvalue Problem , 1981 .

[30]  Horst D. Simon,et al.  Partitioning of unstructured problems for parallel processing , 1991 .

[31]  Ümit V. Çatalyürek,et al.  Hypergraph-Partitioning-Based Decomposition for Parallel Sparse-Matrix Vector Multiplication , 1999, IEEE Trans. Parallel Distributed Syst..

[32]  Andrew V. Knyazev,et al.  Toward the Optimal Preconditioned Eigensolver: Locally Optimal Block Preconditioned Conjugate Gradient Method , 2001, SIAM J. Sci. Comput..

[33]  CLARK R. DOHRMANN,et al.  A Preconditioner for Substructuring Based on Constrained Energy Minimization , 2003, SIAM J. Sci. Comput..

[34]  Shang-Hua Teng,et al.  How Good is Recursive Bisection? , 1997, SIAM J. Sci. Comput..

[35]  Youcef Saad,et al.  A Basic Tool Kit for Sparse Matrix Computations , 1990 .

[36]  Barbara Kaltenbacher,et al.  Iterative Solution Methods , 2015, Handbook of Mathematical Methods in Imaging.