Effects of iron on fatty acid and astaxanthin accumulation in mixotrophic Chromochloris zofingiensis

[1]  Yue Jiang,et al.  Differential lipid and fatty acid profiles of photoautotrophic and heterotrophic Chlorella zofingiensis: assessment of algal oils for biodiesel production. , 2011, Bioresource technology.

[2]  V. Raman,et al.  Effect of salicylic acid and methyl jasmonate on antioxidant systems of Haematococcus pluvialis , 2011, Acta Physiologiae Plantarum.

[3]  Chunfang Gao,et al.  Double CO(2) fixation in photosynthesis-fermentation model enhances algal lipid synthesis for biodiesel production. , 2010, Bioresource technology.

[4]  G. Knothe Improving biodiesel fuel properties by modifying fatty ester composition , 2009 .

[5]  Tao Chen,et al.  EMPLOYMENT OF ORGANIC ACIDS TO ENHANCE ASTAXANTHIN FORMATION IN HETEROTROPHIC CHLORELLA ZOFINGIENSIS , 2009 .

[6]  Shahriar Shafiee,et al.  When will fossil fuel reserves be diminished , 2009 .

[7]  Chengwu Zhang,et al.  The synthesis of astaxanthin esters, independent of the formation of cysts, highly correlates with the synthesis of fatty acids in Haematococcus pluvialis , 2008, Science in China Series C: Life Sciences.

[8]  Yantao Li,et al.  Sugar-based growth, astaxanthin accumulation and carotenogenic transcription of heterotrophic Chlorella zofingiensis (Chlorophyta) , 2008 .

[9]  Q. Hu,et al.  Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. , 2008, The Plant journal : for cell and molecular biology.

[10]  Y. Naito,et al.  Astaxanthin improves muscle lipid metabolism in exercise via inhibitory effect of oxidative CPT I modification. , 2008, Biochemical and biophysical research communications.

[11]  Gerhard Knothe,et al.  “Designer” Biodiesel: Optimizing Fatty Ester Composition to Improve Fuel Properties† , 2008 .

[12]  B. Bjerkeng Carotenoids in Aquaculture: Fish and Crustaceans , 2008 .

[13]  Y. Chisti Biodiesel from microalgae. , 2007, Biotechnology advances.

[14]  S. Polasky,et al.  Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[15]  X. Miao,et al.  Biodiesel production from heterotrophic microalgal oil. , 2006, Bioresource technology.

[16]  F. Goycoolea,et al.  Astaxanthin: A Review of its Chemistry and Applications , 2006, Critical reviews in food science and nutrition.

[17]  Kinzo Matsumoto,et al.  Astaxanthin, a carotenoid with potential in human health and nutrition. , 2006, Journal of natural products.

[18]  A. Zarka,et al.  INHIBITION OF ASTAXANTHIN SYNTHESIS UNDER HIGH IRRADIANCE DOES NOT ABOLISH TRIACYLGLYCEROL ACCUMULATION IN THE GREEN ALGA HAEMATOCOCCUS PLUVIALIS (CHLOROPHYCEAE) 1 , 2005 .

[19]  Feng Chen,et al.  Production of astaxanthin by the green microalga Chlorella zofingiensis in the dark , 2005 .

[20]  Feng Chen,et al.  Enhanced production of astaxanthin by the green microalga Chlorella zofingiensis in mixotrophic culture , 2004 .

[21]  S. Sánchez,et al.  Copper but not iron limitation increases astaxanthin production by Phaffia rhodozyma in a chemically defined medium , 2001, Biotechnology Letters.

[22]  John A. Raven,et al.  The role of trace metals in photosynthetic electron transport in O2-evolving organisms , 1999, Photosynthesis Research.

[23]  Michael R. Johns,et al.  Effect of C/N ratio and aeration on the fatty acid composition of heterotrophicChlorella sorokiniana , 1991, Journal of Applied Phycology.

[24]  M. Johns,et al.  Fatty acid production by heterotrophic Chlorella saccharophila , 2004, Hydrobiologia.

[25]  T. Yamane,et al.  Zeaxanthin Accumulation in the Absence of a Functional Xanthophyll Cycle Protects Chlamydomonas reinhardtii from Photooxidative Stress Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.010405. , 2003, The Plant Cell Online.

[26]  J. M. Park,et al.  Evaluation of Factors Promoting Astaxanthin Production by a Unicellular Green Alga, Haematococcus pluvialis, with Fractional Factorial Design , 2002, Biotechnology progress.

[27]  Yuan-Kun Lee,et al.  Effects of nutrient levels on cell growth and secondary carotenoids formation in the freshwater green alga, Chlorococcum sp. , 2000 .

[28]  E. Gantt,et al.  GENES AND ENZYMES OF CAROTENOID BIOSYNTHESIS IN PLANTS. , 1998, Annual review of plant physiology and plant molecular biology.

[29]  N. Misawa,et al.  Structure and functional analysis of a marine bacterial carotenoid biosynthesis gene cluster and astaxanthin biosynthetic pathway proposed at the gene level , 1995, Journal of bacteriology.

[30]  S. Arad,et al.  Pigment and Structural Changes in Chlorella zofingiensis upon Light and Nitrogen Stress , 1995 .

[31]  Shiro Nagai,et al.  Enhanced Carotenoid Biosynthesis by Oxidative Stress in Acetate-Induced Cyst Cells of a Green Unicellular Alga, Haematococcus pluvialis , 1993, Applied and environmental microbiology.

[32]  S. Nagai,et al.  Effect of carbon/nitrogen ratio on encystment accompanied with astaxanthin formation in a green alga, Haematococcus pluvialis , 1992 .

[33]  Shiro Nagai,et al.  Astaxanthin production by a green alga, Haematococcus pluvialis accompanied with morphological changes in acetate media , 1991 .

[34]  S. Miyachi,et al.  Photosynthetic metabolism of 14CO2 in the process of the “glucose-bleaching” of Chlorella protothecoides , 1974 .

[35]  R. Dils Lipid Analysis: Isolation, Separation, Identification and Structural Analysis of Lipids , 1974 .

[36]  W. Christie Lipid analysis;: Isolation, separation, identification, and structural analysis of lipids , 1973 .

[37]  David M. Prescott,et al.  Methods in cell physiology , 1964 .