Coordination and hydrolysis of plutonium ions in aqueous solution using Car-Parrinello molecular dynamics free energy simulations.

Car-Parrinello molecular dynamics (CPMD) simulations have been used to examine the hydration structures, coordination energetics, and the first hydrolysis constants of Pu(3+), Pu(4+), PuO2(+), and PuO2(2+) ions in aqueous solution at 300 K. The coordination numbers and structural properties of the first shell of these ions are in good agreement with available experimental estimates. The hexavalent PuO2(2+) species is coordinated to five aquo ligands while the pentavalent PuO2(+) complex is coordinated to four aquo ligands. The Pu(3+) and Pu(4+) ions are both coordinated to eight water molecules. The first hydrolysis constants obtained for Pu(3+) and PuO2(2+) are 6.65 and 5.70, respectively, all within 0.3 pH unit of the experimental values (6.90 and 5.50, respectively). The hydrolysis constant of Pu(4+), 0.17, disagrees with the value of -0.60 in the most recent update of the Nuclear Energy Agency Thermochemical Database (NEA-TDB) but supports recent experimental findings. The hydrolysis constant of PuO2(+), 9.51, supports the experimental results of Bennett et al. [Radiochim. Acta 1992, 56, 15]. A correlation between the pKa of the first hydrolysis reaction and the effective charge of the plutonium center was found.

[1]  U. Wahlgren,et al.  Quantum chemical calculations of reduction potentials of AnO2(2+)/AnO2+ (An = U, Np, Pu, Am) and Fe3+/Fe2+ couples. , 2006, The journal of physical chemistry. A.

[2]  G. Schreckenbach,et al.  Theoretical study of the structural properties of plutonium(IV) and (VI) complexes. , 2011, The journal of physical chemistry. A.

[3]  Richard L. Martin,et al.  Theoretical studies of the structures and vibrational frequencies of actinide compounds using relativistic effective core potentials with Hartree–Fock and density functional methods: UF6, NpF6, and PuF6 , 1998 .

[4]  M. Fuss,et al.  New insights in the formation processes of Pu(IV) colloids , 2009 .

[5]  F. J. Espinosa-Faller,et al.  Higher order speciation effects on plutonium L(3) X-ray absorption near edge spectra. , 2004, Inorganic chemistry.

[6]  Dennis R. Salahub,et al.  Optimization of Gaussian-type basis sets for local spin density functional calculations. Part I. Boron through neon, optimization technique and validation , 1992 .

[7]  C. Graves,et al.  Pentavalent uranium chemistry: synthetic pursuit of a rare oxidation state. , 2009, Chemical communications.

[8]  B. Scott,et al.  High-Yield Synthesis and Single-Crystal X-ray Structure of a Plutonium(III) Aquo Complex: [Pu(H2O)9][CF3SO3]3 , 2001 .

[9]  D. Hamann,et al.  Norm-Conserving Pseudopotentials , 1979 .

[10]  T. Toraishi,et al.  Solution coordination chemistry of actinides: Thermodynamics, structure and reaction mechanisms , 2006 .

[11]  E. Bylaska,et al.  The aqueous Ca2+ system, in comparison with Zn2+, Fe3+, and Al3+: an ab initio molecular dynamics study. , 2013, Chemistry.

[12]  Michael Dolg,et al.  Ab initio pseudopotentials for Hg through Rn , 1991 .

[13]  F. L. Hirshfeld Bonded-atom fragments for describing molecular charge densities , 1977 .

[14]  James A. Sullivan,et al.  Preparation, stability, and structural characterization of plutonium(VII) in alkaline aqueous solution. , 2012, Inorganic chemistry.

[15]  S. Nosé A molecular dynamics method for simulations in the canonical ensemble , 1984 .

[16]  L. Rao,et al.  Hydrolysis of plutonium(VI) at variable temperatures (283-343 K). , 2011, Chemistry.

[17]  L. Soderholm,et al.  Solution and solid-state structural chemistry of actinide hydrates and their hydrolysis and condensation products. , 2013, Chemical reviews.

[18]  P. Blöchl,et al.  Electrostatic decoupling of periodic images of plane‐wave‐expanded densities and derived atomic point charges , 1995 .

[19]  S. Conradson,et al.  Structure of early actinides(V) in acidic solutions , 2009 .

[20]  G. L. Silver Equilibrium method for estimating the first hydrolysis constant of tetravalent plutonium , 2010 .

[21]  C. Walther,et al.  Investigation of the hydrolysis of plutonium(IV) by a combination of spectroscopy and redox potential measurements , 2007 .

[22]  M. Bühl,et al.  Insights into uranyl chemistry from molecular dynamics simulations. , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[23]  Xueyuan Chen,et al.  Hydrolysis of Uranium(VI) at Variable Temperatures (10-85 °C) , 2004 .

[24]  N. M. Edelstein,et al.  Investigation of Aquo and Chloro Complexes of UO(2)(2+), NpO(2)(+), Np(4+), and Pu(3+) by X-ray Absorption Fine Structure Spectroscopy. , 1997, Inorganic chemistry.

[25]  T. Srinivasan,et al.  Hydrolysis of neptunium(V) at variable temperatures (10–85°C) , 2004 .

[26]  Car,et al.  Unified approach for molecular dynamics and density-functional theory. , 1985, Physical review letters.

[27]  Weitao Yang,et al.  Challenges for density functional theory. , 2012, Chemical reviews.

[28]  I. Bányai,et al.  The Rates and Mechanisms of Water Exchange of Actinide Aqua Ions: A Variable Temperature17O NMR Study of U(H2O)104+, UF(H2O)93+, and Th(H2O)104+ , 2000 .

[29]  F. D. Groot,et al.  High-Resolution X-ray Emission and X-ray Absorption Spectroscopy , 2001 .

[30]  Scott B. Baden,et al.  Parallel implementation of γ‐point pseudopotential plane‐wave DFT with exact exchange , 2011, J. Comput. Chem..

[31]  Joost VandeVondele,et al.  Isobaric-isothermal molecular dynamics simulations utilizing density functional theory: an assessment of the structure and density of water at near-ambient conditions. , 2009, The journal of physical chemistry. B.

[32]  T. Nenoff,et al.  Hydration structures of U(III) and U(IV) ions from ab initio molecular dynamics simulations. , 2012, The Journal of chemical physics.

[33]  G. Schreckenbach,et al.  Density functional studies of actinyl aquo complexes studied using small-core effective core potentials and a scalar four-component relativistic method. , 2005, The journal of physical chemistry. A.

[34]  R. Russo,et al.  Hydrolysis and Carbonate Complexation of Dioxoplutonium(V) , 1992 .

[35]  P. Vitorge,et al.  Polarizable interaction potential for molecular dynamics simulations of actinoids(III) in liquid water. , 2011, The Journal of chemical physics.

[36]  N. Agmon,et al.  The Grotthuss mechanism , 1995 .

[37]  M. Fang,et al.  Sorption Speciation of Lanthanides/Actinides on Minerals by TRLFS, EXAFS and DFT Studies: A Review , 2010, Molecules.

[38]  E. Bylaska,et al.  Ion association in AlCl3 aqueous solutions from constrained first-principles molecular dynamics. , 2012, Inorganic chemistry.

[39]  M. Denecke,et al.  Plutonium(III,IV,VI) speciation in Gorleben groundwater using XAFS , 2009 .

[40]  D. Shuh,et al.  Coordination chemistry of trivalent lanthanide and actinide ions in dilute and concentrated chloride solutions. , 2000, Inorganic chemistry.

[41]  Richard L. Martin,et al.  Theoretical Studies of the Properties and Solution Chemistry of AnO22+and AnO2+Aquo Complexes for An = U, Np, and Pu , 2000 .

[42]  S. Cukierman,et al.  Et tu, Grotthuss! and other unfinished stories. , 2006, Biochimica et biophysica acta.

[43]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[44]  A. H. Bond,et al.  Redox speciation of plutonium , 1997 .

[45]  G. Choppin Actinide speciation in the environment , 2007 .

[46]  M. Bühl,et al.  Effect of hydration on coordination properties of uranyl(VI) complexes. A first-principles molecular dynamics study. , 2006, Journal of the American Chemical Society.

[47]  U. Wahlgren,et al.  Actinide Chemistry in Solution, Quantum Chemical Methods and Models , 2006 .

[48]  K. Kraus,et al.  Hydrolytic Behavior of Metal Ions. I. The Acid Constants of Uranium(IV) and Plutonium(IV)1 , 1950 .

[49]  S. Zygmunt,et al.  Relativistic density functional investigation of Pu(H2O)n3+ clusters , 1999 .

[50]  C. Delegard,et al.  Hydrolysis of Np(IV) and Pu(IV) and their complexation by aqueous Si(OH)4 , 2004 .

[51]  A. Laio,et al.  Metadynamics: a method to simulate rare events and reconstruct the free energy in biophysics, chemistry and material science , 2008 .

[52]  Martins,et al.  Efficient pseudopotentials for plane-wave calculations. , 1991, Physical review. B, Condensed matter.

[53]  Ivano Tavernelli,et al.  Structure and Dynamics of Liquid Water from ab Initio Molecular Dynamics-Comparison of BLYP, PBE, and revPBE Density Functionals with and without van der Waals Corrections. , 2012, Journal of chemical theory and computation.

[54]  M. Ephritikhine,et al.  Easy access to stable pentavalent uranyl complexes. , 2006, Chemical communications.

[55]  M. Sprik Computation of the pK of liquid water using coordination constraints , 2000 .

[56]  E. Bylaska,et al.  Near-Quantitative Agreement of Model-Free DFT-MD Predictions with XAFS Observations of the Hydration Structure of Highly Charged Transition-Metal Ions. , 2012, The journal of physical chemistry letters.

[57]  A. Suzuki,et al.  Theoretical Gibbs free energy study on UO2(H2O)n2+ and its hydrolysis products , 2001 .

[58]  I. Bányai,et al.  Rates and mechanisms of water exchange of UO2(2+)(aq) and UO2(oxalate)F(H2O)2-: a variable-temperature 17O and 19F NMR study. , 2000, Inorganic chemistry.

[59]  Hamann Generalized norm-conserving pseudopotentials. , 1989, Physical review. B, Condensed matter.

[60]  S. Skanthakumar,et al.  Determination of actinide speciation in solution using high-energy X-ray scattering , 2005, Analytical and bioanalytical chemistry.

[61]  E. Bylaska,et al.  Structure and hydrolysis of the U(IV), U(V), and U(VI) aqua ions from ab initio molecular simulations. , 2012, Inorganic chemistry.

[62]  J. Love,et al.  Pentavalent uranyl complexes , 2009 .

[63]  Georg Schreckenbach,et al.  Theoretical actinide molecular science. , 2010, Accounts of chemical research.

[64]  D. Shuh,et al.  X-ray absorption fine structure spectroscopy of plutonium complexes with bacillus sphaericus , 2002 .

[65]  D. L. Clark,et al.  Actinide Carbonte Complexes and Their Importance in Actinide Environmental Chemistry , 1995 .

[66]  E. Bylaska,et al.  Structure and dynamics of the hydration shells of the Al3+ ion. , 2007, The Journal of chemical physics.

[67]  Roger Impey,et al.  Hydration and mobility of ions in solution , 1983 .

[68]  Giulia Galli,et al.  First Principles Simulations of the Infrared Spectrum of Liquid Water Using Hybrid Density Functionals. , 2011, Journal of chemical theory and computation.

[69]  E. Bylaska,et al.  Hydration shell structure and dynamics of curium(III) in aqueous solution: first principles and empirical studies. , 2011, The journal of physical chemistry. A.

[70]  M. Neu,et al.  Pu(VI) hydrolysis: further evidence for a dimeric plutonyl hydroxide and contrasts with U(VI) chemistry. , 2006, Inorganic chemistry.

[71]  Leonard Kleinman,et al.  Efficacious Form for Model Pseudopotentials , 1982 .

[72]  M. Bühl,et al.  Acidity of Uranyl(VI) Hydrate Studied with First‐Principles Molecular Dynamics Simulations , 2006 .

[73]  Tjerk P. Straatsma,et al.  NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations , 2010, Comput. Phys. Commun..

[74]  Michael Dolg,et al.  Energy‐adjusted pseudopotentials for the actinides. Parameter sets and test calculations for thorium and thorium monoxide , 1994 .

[75]  Hoover,et al.  Canonical dynamics: Equilibrium phase-space distributions. , 1985, Physical review. A, General physics.

[76]  S. Conradson Application of X-Ray Absorption Fine Structure Spectroscopy to Materials and Environmental Science , 1998 .

[77]  A. Ankudinov,et al.  Relativistic XANES calculations of Pu hydrates , 1998 .

[78]  Eric J. Bylaska,et al.  Importance of Counteranions on the Hydration Structure of the Curium Ion , 2013 .

[79]  F. Gygi,et al.  Structural and Vibrational Properties of Liquid Water from van der Waals Density Functionals. , 2011, Journal of chemical theory and computation.

[80]  J. I. Kim,et al.  Solubility and hydrolysis of tetravalent actinides , 2001 .