Principles of Virus Structural Organization

Viruses, the molecular nanomachines infecting hosts ranging from prokaryotes to eukaryotes, come in different sizes, shapes, and symmetries. Questions such as what principles govern their structural organization, what factors guide their assembly, how these viruses integrate multifarious functions into one unique structure have enamored researchers for years. In the last five decades, following Caspar and Klug’s elegant conceptualization of how viruses are constructed, high-resolution structural studies using X-ray crystallography and more recently cryo-EM techniques have provided a wealth of information on structures of a variety of viruses. These studies have significantly furthered our understanding of the principles that underlie structural organization in viruses. Such an understanding has practical impact in providing a rational basis for the design and development of antiviral strategies. In this chapter, we review principles underlying capsid formation in a variety of viruses, emphasizing the recent developments along with some historical perspective.

[1]  PROTEIN-RNA INTERACTIONS IN AN ICOSAHEDRAL VIRUS AT 3.0 ANGSTROMS RESOLUTION , 1989 .

[2]  M. Baker,et al.  4.4 Å cryo-EM structure of an enveloped alphavirus Venezuelan equine encephalitis virus , 2011, The EMBO journal.

[3]  W. Chiu,et al.  Visualization of ordered genomic RNA and localization of transcriptional complexes in rotavirus , 1996, Nature.

[4]  Wei Zhang,et al.  Placement of the Structural Proteins in Sindbis Virus , 2002, Journal of Virology.

[5]  Wah Chiu,et al.  Three-dimensional structure of the HSV1 nucleocapsid , 1989, Cell.

[6]  A C Steven,et al.  Virus Maturation Involving Large Subunit Rotations and Local Refolding , 2001, Science.

[7]  M. Murthy,et al.  The structure of a T = 1 icosahedral empty particle from southern bean mosaic virus. , 1985, Science.

[8]  S. Harrison Viral membrane fusion , 2008, Nature Structural &Molecular Biology.

[9]  R. M. Burnett,et al.  Does common architecture reveal a viral lineage spanning all three domains of life? , 2004, Molecular cell.

[10]  Nikolaus Grigorieff,et al.  Near-atomic resolution reconstructions of icosahedral viruses from electron cryo-microscopy. , 2011, Current opinion in structural biology.

[11]  J. Skehel,et al.  Structure of influenza haemagglutinin at the pH of membrane fusion , 1994, Nature.

[12]  Glen R. Nemerow,et al.  Visualization of α-Helices in a 6-Ångstrom Resolution Cryoelectron Microscopy Structure of Adenovirus Allows Refinement of Capsid Protein Assignments , 2006, Journal of Virology.

[13]  M. Estes,et al.  Mechanism of genome transcription in segmented dsRNA viruses , 2000, Advances in Virus Research.

[14]  John E. Johnson,et al.  L-A virus at 3.4 Å resolution reveals particle architecture and mRNA decapping mechanism , 2002, Nature Structural Biology.

[15]  A. Klug,et al.  STRUCTURE OF VIRUSES OF THE PAPILLOMA-POLYOMA TYPE. I. HUMAN WART VIRUS. , 1965, Journal of molecular biology.

[16]  John E. Johnson,et al.  Time-resolved molecular dynamics of bacteriophage HK97 capsid maturation interpreted by electron cryo-microscopy and X-ray crystallography. , 2006, Journal of structural biology.

[17]  J. King,et al.  Structure of epsilon15 bacteriophage reveals genome organization and DNA packaging/injection apparatus , 2006, Nature.

[18]  G. Gao,et al.  Structural Basis for Coronavirus-mediated Membrane Fusion , 2004, Journal of Biological Chemistry.

[19]  B. Prasad,et al.  A monoclonal antibody specific for reovirus outer-capsid protein sigma3 inhibits sigma1-mediated hemagglutination by steric hindrance. , 2001, Journal of virology.

[20]  R. Horne,et al.  An Historical Account Of The Development And Applications Of The Negative Staining Technique To The Electron Microscopy Of Viruses , 1979, Journal of microscopy.

[21]  M. Estes,et al.  Structural Requirements for the Assembly of Norwalk Virus-Like Particles , 2002, Journal of Virology.

[22]  Deborah Fass,et al.  Core Structure of gp41 from the HIV Envelope Glycoprotein , 1997, Cell.

[23]  F. Rey,et al.  Dengue virus envelope glycoprotein structure: New insight into its interactions during viral entry , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[24]  R. Heinkel,et al.  Combined EM/X-ray imaging yields a quasi-atomic model of the adenovirus-related bacteriophage PRD1 and shows key capsid and membrane interactions. , 2001, Structure.

[25]  S. Harrison,et al.  Structure of the reovirus core at 3.6 Å resolution , 2000, Nature.

[26]  R. M. Burnett,et al.  Three-dimensional structure of the adenovirus major coat protein hexon. , 1986, Science.

[27]  Y. Li,et al.  Protein-RNA interactions in an icosahedral virus at 3.0 A resolution. , 1989, Science.

[28]  John E. Johnson,et al.  Quasi-equivalent viruses: a paradigm for protein assemblies. , 1997, Journal of molecular biology.

[29]  S. Harrison,et al.  The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution , 1995, Nature.

[30]  M. Rossmann,et al.  Structural Changes of Envelope Proteins During Alphavirus Fusion , 2010, Nature.

[31]  F. DiMaio,et al.  Structural basis for scaffolding-mediated assembly and maturation of a dsDNA virus , 2011, Proceedings of the National Academy of Sciences.

[32]  Wei Zhang,et al.  Structure of the Immature Dengue Virus at Low pH Primes Proteolytic Maturation , 2008, Science.

[33]  F. Rixon,et al.  Multiple interactions control the intracellular localization of the herpes simplex virus type 1 capsid proteins. , 1996, The Journal of general virology.

[34]  John E. Johnson,et al.  The Prohead-I structure of bacteriophage HK97: implications for scaffold-mediated control of particle assembly and maturation. , 2011, Journal of molecular biology.

[35]  Brian McClain,et al.  X-ray crystal structure of the rotavirus inner capsid particle at 3.8 A resolution. , 2010, Journal of molecular biology.

[36]  J. H. Strauss,et al.  Structure of dengue virus: implications for flavivirus organization, maturation, and fusion , 2002 .

[37]  B L Trus,et al.  Three-dimensional structure of poliovirus receptor bound to poliovirus. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[38]  A. Leslie,et al.  The crystal structure of the human hepatitis B virus capsid. , 1999, Molecular cell.

[39]  Venigalla B Rao,et al.  Structure and assembly of bacteriophage T4 head , 2010, Virology Journal.

[40]  E. Egelman,et al.  The Sendai virus nucleocapsid exists in at least four different helical states , 1989, Journal of virology.

[41]  J Jakana,et al.  Three-dimensional structure of scaffolding-containing phage p22 procapsids by electron cryo-microscopy. , 1996, Journal of molecular biology.

[42]  A Klug,et al.  Structure of viruses of the papilloma-polyoma type. IV. Analysis of tilting experiments in the electron microscope. , 1968, Journal of molecular biology.

[43]  T. A. Jones,et al.  Structure of satellite tobacco necrosis virus at 3.0 A resolution. , 1982, Journal of molecular biology.

[44]  B. Prasad,et al.  Interactions between the Inner and Outer Capsids of Bluetongue Virus , 2004, Journal of Virology.

[45]  K. Namba,et al.  Visualization of protein-nucleic acid interactions in a virus. Refined structure of intact tobacco mosaic virus at 2.9 A resolution by X-ray fiber diffraction. , 1989, Journal of molecular biology.

[46]  Benjamin G. Levine,et al.  Structure and mechanism of proton transport through the transmembrane tetrameric M2 protein bundle of the influenza A virus , 2010, Proceedings of the National Academy of Sciences.

[47]  G. Stubbs Tobacco mosaic virus particle structure and the initiation of disassembly. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[48]  L. Liljas,et al.  Structure of RNA in satellite tobacco necrosis virus. A low resolution neutron diffraction study using 1H2O/2H2O solvent contrast variation. , 1987, Journal of molecular biology.

[49]  J. King,et al.  Three-dimensional transformation of capsids associated with genome packaging in a bacterial virus. , 1993, Journal of molecular biology.

[50]  S. Harrison,et al.  Tomato bushy stunt virus at 2.9 Å resolution , 1978, Nature.

[51]  R. A. Crowther,et al.  Three-dimensional structure of hepatitis B virus core particles determined by electron cryomicroscopy , 1994, Cell.

[52]  R. Liddington,et al.  Structure of simian virus 40 at 3.8-Å resolution , 1991, Nature.

[53]  John E. Johnson,et al.  Structure of a human common cold virus and functional relationship to other picornaviruses , 1985, Nature.

[54]  John E. Johnson,et al.  Virus Particle Explorer (VIPER), a Website for Virus Capsid Structures and Their Computational Analyses , 2001, Journal of Virology.

[55]  Nikolaus Grigorieff,et al.  Subunit interactions in bovine papillomavirus , 2010, Proceedings of the National Academy of Sciences.

[56]  M G Rossmann,et al.  X-ray crystallographic structure of the Norwalk virus capsid. , 1999, Science.

[57]  J Jakana,et al.  Protein subunit structures in the herpes simplex virus A-capsid determined from 400 kV spot-scan electron cryomicroscopy. , 1994, Journal of molecular biology.

[58]  John E. Johnson,et al.  Icosahedral RNA virus structure. , 1989, Annual review of biochemistry.

[59]  W. Chiu,et al.  Roles of Triplex and Scaffolding Proteins in Herpes Simplex Virus Type 1 Capsid Formation Suggested by Structures of Recombinant Particles , 1999, Journal of Virology.

[60]  John E. Johnson,et al.  Virus assembly: Imaging a molecular machine , 1999, Current Biology.

[61]  Z. Zhou,et al.  Hydrogen-bonding networks and RNA bases revealed by cryo electron microscopy suggest a triggering mechanism for calcium switches , 2011, Proceedings of the National Academy of Sciences.

[62]  David Rowlands,et al.  The three-dimensional structure of foot-and-mouth disease virus at 2.9 Å resolution , 1989, Nature.

[63]  P L Stewart,et al.  Cryo‐EM visualization of an exposed RGD epitope on adenovirus that escapes antibody neutralization , 1997, The EMBO journal.

[64]  J. Dubochet,et al.  Cryo-electron microscopy of vitrified specimens , 1988, Quarterly Reviews of Biophysics.

[65]  Timothy S Baker,et al.  Assembly of a Tailed Bacterial Virus and Its Genome Release Studied in Three Dimensions , 1998, Cell.

[66]  Harry B. Greenberg,et al.  Structure of Rotavirus Outer-Layer Protein VP7 Bound with a Neutralizing Fab , 2009, Science.

[67]  M. F. Moody Geometry of phage head construction. , 1999, Journal of molecular biology.

[68]  C. Coulson,et al.  Molecular Architecture , 1953, Nature.

[69]  S. Harrison,et al.  Structural rearrangements in the membrane penetration protein of a non-enveloped virus , 2004, Nature.

[70]  Guy Schoehn,et al.  The structure of the human adenovirus 2 penton. , 2005, Molecular cell.

[71]  J. N. Varghese,et al.  Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 Å resolution , 1983, Nature.

[72]  K. Mizuno,et al.  Monoclonal Antibody , 2020, Definitions.

[73]  M. Rossmann,et al.  Structure of Immature West Nile Virus , 2007, Journal of Virology.

[74]  A. Klug,et al.  The structure of turnip yellow mosaic virus; x-ray diffraction studies. , 1957, Biochimica et biophysica acta.

[75]  Z. Zhou,et al.  Cryo-EM Model of the Bullet-Shaped Vesicular Stomatitis Virus , 2010, Science.

[76]  Matthew L. Baker,et al.  Rotavirus Architecture at Subnanometer Resolution , 2008, Journal of Virology.

[77]  Ari-Matti Saren,et al.  A snapshot of viral evolution from genome analysis of the tectiviridae family. , 2005, Journal of molecular biology.

[78]  M. Estes,et al.  X-ray structure of a native calicivirus: structural insights into antigenic diversity and host specificity. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[79]  R. Crowther From envelopes to atoms: The remarkable progress of biological electron microscopy. , 2010, Advances in protein chemistry and structural biology.

[80]  W. R. Wikoff,et al.  Imaging RNA and dynamic protein segments with low-resolution virus crystallography: experimental design, data processing and implications of electron density maps. , 1998, Journal of molecular biology.

[81]  Wah Chiu,et al.  Cryo-EM of macromolecular assemblies at near-atomic resolution , 2010, Nature Protocols.

[82]  Michael G Rossmann,et al.  Molecular architecture of the prolate head of bacteriophage T4. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[83]  M. Baker,et al.  Common Ancestry of Herpesviruses and Tailed DNA Bacteriophages , 2005, Journal of Virology.

[84]  Roger M. Burnett,et al.  Image reconstruction reveals the complex molecular organization of adenovirus , 1991, Cell.

[85]  D. Filman,et al.  Three-dimensional structure of poliovirus at 2.9 A resolution. , 1985, Science.

[86]  Nikolaus Grigorieff,et al.  Atomic model of an infectious rotavirus particle , 2010, The EMBO journal.

[87]  Gabriel Lander,et al.  Capsid conformational sampling in HK97 maturation visualized by X-ray crystallography and cryo-EM. , 2006, Structure.

[88]  John E. Johnson,et al.  Particle Polymorphism Caused by Deletion of a Peptide Molecular Switch in a Quasiequivalent Icosahedral Virus , 1998, Journal of Virology.

[89]  S. Mukherjee,et al.  Reproductive toxicology. Diethylstilbestrol. , 1997, Environmental health perspectives.

[90]  Robert S Sinkovits,et al.  Partitivirus structure reveals a 120-subunit, helix-rich capsid with distinctive surface arches formed by quasisymmetric coat-protein dimers. , 2008, Structure.

[91]  W. Chiu,et al.  Seeing the herpesvirus capsid at 8.5 A. , 2000, Science.

[92]  Wah Chiu,et al.  Electron Cryotomography Reveals the Portal in the Herpesvirus Capsid , 2006, Journal of Virology.

[93]  S. Harrison,et al.  Structure and assembly of turnip crinkle virus. I. X-ray crystallographic structure analysis at 3.2 A resolution. , 1986, Journal of molecular biology.

[94]  M. Rossmann,et al.  Structural and functional similarities between the capsid proteins of bacteriophages T4 and HK97 point to a common ancestry. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[95]  Roman Tuma,et al.  Characterization of subunit-specific interactions in a double-stranded RNA virus: Raman difference spectroscopy of the phi6 procapsid. , 2002, Biochemistry.

[96]  R. Tuma,et al.  Mechanisms of virus assembly probed by Raman spectroscopy: the icosahedral bacteriophage P22. , 1997, Biophysical chemistry.

[97]  Z. Zhou,et al.  Direct Visualization of the Putative Portal in the Kaposi's Sarcoma-Associated Herpesvirus Capsid by Cryoelectron Tomography , 2007, Journal of Virology.

[98]  J A Lawton,et al.  Three-dimensional structural analysis of recombinant rotavirus-like particles with intact and amino-terminal-deleted VP2: implications for the architecture of the VP2 capsid layer , 1997, Journal of virology.

[99]  R. M. Burnett,et al.  The refined crystal structure of hexon, the major coat protein of adenovirus type 2, at 2.9 A resolution. , 1994, Journal of molecular biology.

[100]  John E. Johnson,et al.  PRINCIPLES OF VIRUS STRUCTURE , 1999 .

[101]  R. Horne,et al.  A negative staining method for high resolution electron microscopy of viruses. , 1959, Biochimica et biophysica acta.

[102]  Van Raji A triple beta-spiral in the adenovirus fibre shaft reveals a new structural motif for a fibrous protein. , 1999 .

[103]  Timothy S Baker,et al.  Reovirus polymerase lambda 3 localized by cryo-electron microscopy of virions at a resolution of 7.6 A. , 2003, Nature structural biology.

[104]  D. Stuart,et al.  The atomic structure of the bluetongue virus core , 1998, Nature.

[105]  G. Vriend,et al.  The atomic structure of Mengo virus at 3.0 A resolution. , 1987, Science.

[106]  P. Sorger,et al.  Structure and assembly of turnip crinkle virus. II. Mechanism of reassembly in vitro. , 1986, Journal of molecular biology.

[107]  A. Klug,et al.  Three Dimensional Reconstructions of Spherical Viruses by Fourier Synthesis from Electron Micrographs , 1970, Nature.

[108]  R. Lamb,et al.  Structural basis of viral invasion: lessons from paramyxovirus F. , 2007, Current opinion in structural biology.

[109]  M. Rossmann,et al.  DNA packaging intermediates of bacteriophage φX174. , 1995, Structure.

[110]  Alasdair C. Steven,et al.  Dynamics of herpes simplex virus capsid maturation visualized by time-lapse cryo-electron microscopy , 2003, Nature Structural Biology.

[111]  M. Rossmann,et al.  Cryo-EM Reconstruction of Dengue Virus in Complex with the Carbohydrate Recognition Domain of DC-SIGN , 2006, Cell.

[112]  B. Prasad,et al.  A Monoclonal Antibody Specific for Reovirus Outer-Capsid Protein ς3 Inhibits ς1-Mediated Hemagglutination by Steric Hindrance , 2001, Journal of Virology.

[113]  G. E. W. Wolstenholme,et al.  Ciba Foundation Symposium on the Nature of Viruses. , 1957 .

[114]  Kristin N. Parent,et al.  Cryo-reconstructions of P22 polyheads suggest that phage assembly is nucleated by trimeric interactions among coat proteins , 2010, Physical biology.

[115]  Wen Jiang,et al.  Cryo-EM asymmetric reconstruction of bacteriophage P22 reveals organization of its DNA packaging and infecting machinery. , 2006, Structure.

[116]  B Berger,et al.  Local rule-based theory of virus shell assembly. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[117]  S D Fuller,et al.  Cryo-electron microscopy reveals the functional organization of an enveloped virus, Semliki Forest virus. , 2000, Molecular cell.

[118]  P. Wingfield,et al.  Visualization of a 4-helix bundle in the hepatitis B virus capsid by cryo-electron microscopy , 1997, Nature.

[119]  B. Böttcher,et al.  Determination of the fold of the core protein of hepatitis B virus by electron cryomicroscopy , 1997, Nature.

[120]  M. Estes,et al.  Emerging themes in rotavirus cell entry, genome organization, transcription and replication. , 2004, Virus research.

[121]  Ying Zhang,et al.  The Flavivirus Precursor Membrane-Envelope Protein Complex: Structure and Maturation , 2008, Science.

[122]  Timothy S. Baker,et al.  Neutralizing antibody to human rhinovirus 14 penetrates the receptor-binding canyon , 1996, Nature.

[123]  P. Prevelige,et al.  Mechanism of scaffolding-assisted viral assembly. , 2003, Advances in protein chemistry.

[124]  S Kundhavai Natchiar,et al.  Crystal Structure of Human Adenovirus at 3.5 Å Resolution , 2010, Science.

[125]  Wei Zhang,et al.  Structure of Dengue Virus Implications for Flavivirus Organization, Maturation, and Fusion , 2002, Cell.

[126]  P. Stewart,et al.  Structure of Flexible Filamentous Plant Viruses , 2008, Journal of Virology.

[127]  M. Rossmann,et al.  Crystallographic and cryo EM analysis of virion-receptor interactions. , 1994, Archives of virology. Supplementum.

[128]  W Chiu,et al.  Role of the scaffolding protein in P22 procapsid size determination suggested by T = 4 and T = 7 procapsid structures. , 1998, Biophysical Journal.

[129]  D. Stuart,et al.  Insights into assembly from structural analysis of bacteriophage PRD1 , 2004, Nature.

[130]  Giovanni Cardone,et al.  Visualization of the herpes simplex virus portal in situ by cryo-electron tomography. , 2007, Virology.

[131]  D. Stuart,et al.  Insights into virus evolution and membrane biogenesis from the structure of the marine lipid-containing bacteriophage PM2. , 2008, Molecular cell.

[132]  B. Prasad,et al.  Conformational Changes in the Capsid of a Calicivirus upon Interaction with Its Functional Receptor , 2010, Journal of Virology.

[133]  R. M. Burnett,et al.  The X-ray crystal structure of P3, the major coat protein of the lipid-containing bacteriophage PRD1, at 1.65 A resolution. , 2002, Acta crystallographica. Section D, Biological crystallography.

[134]  F. Rey,et al.  Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography , 2010, Nature.

[135]  W. Roos,et al.  Norwalk Virus Assembly and Stability Monitored by Mass Spectrometry* , 2010, Molecular & Cellular Proteomics.

[136]  R. Dwek,et al.  Structural Characterization of the 1918 Influenza Virus H1N1 Neuraminidase , 2008, Journal of Virology.

[137]  F. Rey Molecular gymnastics at the herpesvirus surface , 2006, EMBO reports.

[138]  Z. Zhou,et al.  3.88 Å structure of cytoplasmic polyhedrosis virus by cryo-electron microscopy , 2008, Nature.

[139]  K. Namba,et al.  Switching in the self-assembly of tobacco mosaic virus. , 1990, Advances in biophysics.

[140]  F. Crick,et al.  Structure of Small Viruses , 1956, Nature.

[141]  Ivo Atanasov,et al.  Atomic Structure of Human Adenovirus by Cryo-EM Reveals Interactions Among Protein Networks , 2010, Science.

[142]  John E. Johnson,et al.  P22 coat protein structures reveal a novel mechanism for capsid maturation: stability without auxiliary proteins or chemical crosslinks. , 2010, Structure.

[143]  T. Baker,et al.  Reovirus polymerase λ3 localized by cryo-electron microscopy of virions at a resolution of 7.6 Å , 2003, Nature Structural Biology.

[144]  T. Schmidt,et al.  The refined crystal structure of cowpea mosaic virus at 2.8 A resolution. , 1999, Virology.

[145]  A. Klug,et al.  Physical principles in the construction of regular viruses. , 1962, Cold Spring Harbor symposia on quantitative biology.

[146]  I. Wilson,et al.  Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution , 1981, Nature.

[147]  W. Chiu,et al.  Structural Localization of the E3 Glycoprotein in Attenuated Sindbis Virus Mutants , 1998, Journal of Virology.

[148]  R. M. Burnett,et al.  Viral Evolution Revealed by Bacteriophage PRD1 and Human Adenovirus Coat Protein Structures , 1999, Cell.

[149]  D. Stuart,et al.  Membrane structure and interactions with protein and DNA in bacteriophage PRD1 , 2004, Nature.

[150]  F. Quiocho,et al.  Architecture of the herpes simplex virus major capsid protein derived from structural bioinformatics. , 2003, Journal of molecular biology.

[151]  Anna Mitraki,et al.  A triple β-spiral in the adenovirus fibre shaft reveals a new structural motif for a fibrous protein , 1999, Nature.

[152]  M. Baker,et al.  Coat protein fold and maturation transition of bacteriophage P22 seen at subnanometer resolutions , 2003, Nature Structural Biology.

[153]  Don C. Wiley,et al.  Structure of an unliganded simian immunodeficiency virus gp120 core , 2005, Nature.

[154]  Matthew L. Baker,et al.  Backbone structure of the infectious ε15 virus capsid revealed by electron cryomicroscopy , 2008, Nature.

[155]  P. Prevelige,et al.  Viral genome organization. , 2003, Advances in protein chemistry.

[156]  D. Zimmern The region of tobacco mosaic virus RNA involved in the nucleation of assembly. , 1976, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[157]  P WILDY,et al.  STRUCTURE OF ANIMAL VIRUS PARTICLES. , 1963, Progress in medical virology. Fortschritte der medizinischen Virusforschung. Progres en virologie medicale.

[158]  S. Harrison,et al.  The structure of simian virus 40 refined at 3.1 A resolution. , 1996, Structure.

[159]  A. Klug The tobacco mosaic virus particle: structure and assembly. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[160]  R. Johnston,et al.  Three-dimensional structure of a membrane-containing virus. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[161]  F. Quiocho,et al.  Structure of the herpesvirus major capsid protein , 2003, The EMBO journal.

[162]  James D. Watson,et al.  Virus Structure: General Principles , 1957 .

[163]  John E. Johnson,et al.  Ordered duplex RNA controls capsid architecture in an icosahedral animal virus , 1993, Nature.

[164]  Keiichi Namba,et al.  Structure of tobacco mosaic virus at 3.6 A resolution: implications for assembly. , 1986, Science.

[165]  F. Rixon,et al.  Localization of the herpes simplex virus type 1 major capsid protein VP5 to the cell nucleus requires the abundant scaffolding protein VP22a. , 1994, The Journal of general virology.

[166]  R. Franklin,et al.  Structure of Tobacco Mosaic Virus , 1955, Nature.

[167]  D. Caspar Structure of Bushy Stunt Virus , 1956, Nature.

[168]  G. Nybakken,et al.  West Nile virus in complex with the Fab fragment of a neutralizing monoclonal antibody , 2006, Proceedings of the National Academy of Sciences.

[169]  W Chiu,et al.  An atomic model of the outer layer of the bluetongue virus core derived from X-ray crystallography and electron cryomicroscopy. , 1997, Structure.

[170]  Magali Mathieu,et al.  Atomic structure of the major capsid protein of rotavirus: implications for the architecture of the virion , 2001, The EMBO journal.

[171]  R. Horne,et al.  Electron Microscope Observations of Periodicities in the Surface Structure of Tobacco Mosaic Virus , 1956, Nature.

[172]  G. Stubbs,et al.  Site-directed mutagenesis confirms the involvement of carboxylate groups in the disassembly of tobacco mosaic virus. , 1995, Virology.

[173]  J. Dubochet,et al.  Beam damage to organic material is considerably reduced in cryo-electron microscopy. , 1980, Journal of molecular biology.

[174]  Matthew L. Baker,et al.  Backbone structure of the infectious Epsilon15 virus capsid revealed by electron cryomicroscopy , 2008 .

[175]  Alexander McPherson,et al.  Double-helical RNA in satellite tobacco mosaic virus , 1993, Nature.

[176]  John E. Johnson,et al.  Topologically linked protein rings in the bacteriophage HK97 capsid. , 2000, Science.

[177]  B. Prasad,et al.  Structure of rotavirus. , 1994, Current topics in microbiology and immunology.

[178]  N. Ban,et al.  Structural comparison of the plant satellite viruses. , 1995, Virology.

[179]  P. Butler,et al.  Self-assembly of tobacco mosaic virus: the role of an intermediate aggregate in generating both specificity and speed. , 1999, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[180]  John E. Johnson,et al.  Structure of southern bean mosaic virus at 2.8 Å resolution , 1980, Nature.