SYNTHETIC SUPRAMOLECULAR CHEMISTRY

For many decades, the construction of organic compounds in the laboratory has relied on the remarkable abilities of the 20th century ‘alchemists’ — namely, synthetic organic chemists — to make and break covalent bonds. Careful selection of functional groups and reaction conditions, in conjunction with protection/deprotection protocols, constitute the ‘secrets’ and ‘tricks’ of their ‘art’ which is commensurate with ‘traditional’ organic synthesis [1,2]. Indeed, relying on multistep reaction sequences, the total syntheses of structurally intricate molecular compounds which are constructed entirely using covalent bonds — e.g., brevetoxin B [3], palytoxin [4], and the calichearubicins [5] — have been realized in recent times. These very elegant and successful syntheses have required enormous intellectual and hands-on effort by large teams of chemists over rather long periods of time — very often, several years. Moreover, these extremely complex, and often particularly beautiful, examples represent close to state-of-the-art as far as ‘traditional’ organic synthesis is concerned. Alas, they also highlight the difficulties and limitations associated with classical organic syntheses — specifically, that the multistep aspect of such syntheses can be extremely laborious and time-consuming. With the possible exception of some dendritic structures [6], it is becoming apparent that the construction of nanoscopic structures, of the same complexities as those found in biological systems, using these classical methods is out of the reach of even the most talented and optimistic of the 20th century chemists!

[1]  R. E. Marsh,et al.  The crystal structure of trimesic acid (benzene-1,3,5-tricarboxylic acid) , 1969 .

[2]  Margaret C. Etter,et al.  Hydrogen bonds as design elements in organic chemistry , 1991 .

[3]  Jean-Marie Lehn,et al.  Comprehensive Supramolecular Chemistry , 1996 .

[4]  Andrew J. P. White,et al.  Hydrogen‐bonded pseudopolyrotaxanes , 1996 .

[5]  J. F. Stoddart,et al.  Interlocked and Intertwined Structures and Superstructures , 1996 .

[6]  G. Whitesides,et al.  Noncovalent Synthesis: Using Physical-Organic Chemistry To Make Aggregates , 1995 .

[7]  Margaret C. Etter,et al.  Encoding and decoding hydrogen-bond patterns of organic compounds , 1990 .

[8]  D. Lawrence,et al.  Self-Assembling Supramolecular Complexes , 1995 .

[9]  Andrew J. P. White,et al.  Combining different hydrogen-bonding motifs to self-assemble interwoven superstructures , 1998 .

[10]  J. F. Stoddart,et al.  Self-assembling cyclobis(paraquat-4,4'-biphenylene) , 1996 .

[11]  Jean-Marie Lehn,et al.  Perspectives in Supramolecular Chemistry—From Molecular Recognition towards Molecular Information Processing and Self‐Organization , 1990 .

[12]  Gautam R. Desiraju,et al.  The C-H.cntdot..cntdot..cntdot.O hydrogen bond in crystals: what is it? , 1991 .

[13]  Andrew D. Hamilton,et al.  Formation of Artificial Receptors by Metal-Templated Self-Assembly. , 1997, Chemical reviews.

[14]  D. Crothers,et al.  Synthesis and a Preliminary DNA Binding Study of Hybrids of the Carbohydrate Domain of Calicheamicin γ 1I and the Aglycone of Daunorubicin: Calichearubicins A and B , 1996 .

[15]  G. Whitesides What Will Chemistry Do in the Next Twenty Years , 1990 .

[16]  Gautam R. Desiraju,et al.  Supramolecular Synthons in Crystal Engineering—A New Organic Synthesis , 1995 .

[17]  J. F. Stoddart,et al.  Template-Directed Syntheses of Rotaxanes , 1996 .

[18]  J. F. Stoddart,et al.  Template-directed syntheses of catenanes , 1997 .

[19]  Andrew J. P. White,et al.  Cyclobis(Paraquat‐4,4′‐Biphenylene)–an Organic Molecular Square , 1996 .

[20]  J. Bernstein,et al.  Graph-set analysis of hydrogen-bond patterns in organic crystals. , 1990, Acta crystallographica. Section B, Structural science.

[21]  G. Ercolani,et al.  "Quantitative Evaluation of Template Effect in the Formation of Cyclobis(paraquat-p-phenylene)" , 1997 .

[22]  J. Fraser Stoddart,et al.  Controlling Self‐Assembly , 1997 .

[23]  Gautam R. Desiraju,et al.  The C-h···o hydrogen bond:  structural implications and supramolecular design. , 1996, Accounts of chemical research.

[24]  A. Hamilton,et al.  Hydrogen bonding control of self-assembly: Simple isophthalic acid derivatives form cyclic hexameric aggregates , 1994 .

[25]  Douglas Philp,et al.  Self‐Assembly in Natural and Unnatural Systems , 1996 .

[26]  David J. Williams,et al.  Molecular meccano. 1. [2]Rotaxanes and a [2]catenane made to order , 1992 .

[27]  S. Stupp,et al.  Supramolecular Materials: Self-Organized Nanostructures , 1997, Science.

[28]  J. F. Stoddart,et al.  Slippage - a simple and efficient way to self-assemble [n]rotaxanes , 1997 .

[29]  James D. Wuest,et al.  Use of hydrogen bonds to control molecular aggregation. Self-assembly of three-dimensional networks with large chambers , 1991 .

[30]  David J. Williams,et al.  An Interwoven Supramolecular Cage , 1997 .

[31]  Jeffrey S. Moore Shape-Persistent Molecular Architectures of Nanoscale Dimension , 1997 .

[32]  G. Tsoucaris Current challenges on large supramolecular assemblies , 1999 .

[33]  J. Fréchet,et al.  Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. , 1994, Science.

[34]  Steven C. Zimmerman,et al.  Dendrimers in Supramolecular Chemistry: From Molecular Recognition to Self-Assembly. , 1997, Chemical reviews.

[35]  S. Martínez‐Carrera,et al.  The crystal structure of isophthalic acid , 1972 .

[36]  J. Fraser Stoddart,et al.  Rotaxane or Pseudorotaxane? That Is the Question!† , 1998 .

[37]  M. C. Feiters,et al.  A SUPRAMOLECULAR ANALOG OF THE PHOTOSYNTHETIC SPECIAL PAIR , 1997 .

[38]  G. Whitesides,et al.  Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. , 1991, Science.

[39]  D. Tomalia,et al.  Genealogically directed synthesis: Starburst/cascade dendrimers and hyperbranched structures , 1993 .

[40]  Jonathan S. Lindsey,et al.  Self-Assembly in Synthetic Routes to Molecular Devices. Biological Principles and Chemical Perspectives: A Review , 1991 .

[41]  David J. Williams,et al.  Doubly Encircled and Double‐Stranded Pseudorotaxanes , 1995 .

[42]  David J. Williams,et al.  Dialkylammonium Ion/Crown Ether Complexes: The Forerunners of a New Family of Interlocked Molecules , 1995 .

[43]  Raymond E. Davis,et al.  Patterns in Hydrogen Bonding: Functionality and Graph Set Analysis in Crystals , 1995 .

[44]  J. F. Stoddart,et al.  Self-Assembly, Spectroscopic, and Electrochemical Properties of [n]Rotaxanes1 , 1996 .

[45]  E. Corey,et al.  The Logic of Chemical Synthesis , 1989 .

[46]  J. F. Stoddart,et al.  Self-assembling wholly synthetic systems , 1996 .

[47]  Yoshito Kishi,et al.  Synthesis of Palytoxin from Palytoxin Carboxylic Acid , 1994 .

[48]  J. Rebek,et al.  Self-Assembling Capsules. , 1997, Chemical reviews.

[49]  David E Reichert,et al.  Self-Assembling Dendrimers , 1996, Science.

[50]  G. Whitesides,et al.  Solid-State Structures of Hydrogen-Bonded Tapes Based on Cyclic Secondary Diamides , 1994 .

[51]  Douglas Philp,et al.  Self-Assembly in Organic Synthesis , 1992 .

[52]  David J. Williams,et al.  Anion‐Assisted Self‐Assembly , 1997 .

[53]  D. Mingos,et al.  Multidimensional crystal engineering of bifunctional metal complexes containing complementary triple hydrogen bonds , 1995 .

[54]  M. Zaworotko Crystal engineering of diamondoid networks , 1994 .

[55]  K. Seddon,et al.  The hydrogen bond and crystal engineering , 1994 .

[56]  D. Seebach,et al.  Organic Synthesis—Where now? , 1990 .