SYNTHETIC SUPRAMOLECULAR CHEMISTRY
暂无分享,去创建一个
[1] R. E. Marsh,et al. The crystal structure of trimesic acid (benzene-1,3,5-tricarboxylic acid) , 1969 .
[2] Margaret C. Etter,et al. Hydrogen bonds as design elements in organic chemistry , 1991 .
[3] Jean-Marie Lehn,et al. Comprehensive Supramolecular Chemistry , 1996 .
[4] Andrew J. P. White,et al. Hydrogen‐bonded pseudopolyrotaxanes , 1996 .
[5] J. F. Stoddart,et al. Interlocked and Intertwined Structures and Superstructures , 1996 .
[6] G. Whitesides,et al. Noncovalent Synthesis: Using Physical-Organic Chemistry To Make Aggregates , 1995 .
[7] Margaret C. Etter,et al. Encoding and decoding hydrogen-bond patterns of organic compounds , 1990 .
[8] D. Lawrence,et al. Self-Assembling Supramolecular Complexes , 1995 .
[9] Andrew J. P. White,et al. Combining different hydrogen-bonding motifs to self-assemble interwoven superstructures , 1998 .
[10] J. F. Stoddart,et al. Self-assembling cyclobis(paraquat-4,4'-biphenylene) , 1996 .
[11] Jean-Marie Lehn,et al. Perspectives in Supramolecular Chemistry—From Molecular Recognition towards Molecular Information Processing and Self‐Organization , 1990 .
[12] Gautam R. Desiraju,et al. The C-H.cntdot..cntdot..cntdot.O hydrogen bond in crystals: what is it? , 1991 .
[13] Andrew D. Hamilton,et al. Formation of Artificial Receptors by Metal-Templated Self-Assembly. , 1997, Chemical reviews.
[14] D. Crothers,et al. Synthesis and a Preliminary DNA Binding Study of Hybrids of the Carbohydrate Domain of Calicheamicin γ 1I and the Aglycone of Daunorubicin: Calichearubicins A and B , 1996 .
[15] G. Whitesides. What Will Chemistry Do in the Next Twenty Years , 1990 .
[16] Gautam R. Desiraju,et al. Supramolecular Synthons in Crystal Engineering—A New Organic Synthesis , 1995 .
[17] J. F. Stoddart,et al. Template-Directed Syntheses of Rotaxanes , 1996 .
[18] J. F. Stoddart,et al. Template-directed syntheses of catenanes , 1997 .
[19] Andrew J. P. White,et al. Cyclobis(Paraquat‐4,4′‐Biphenylene)–an Organic Molecular Square , 1996 .
[20] J. Bernstein,et al. Graph-set analysis of hydrogen-bond patterns in organic crystals. , 1990, Acta crystallographica. Section B, Structural science.
[21] G. Ercolani,et al. "Quantitative Evaluation of Template Effect in the Formation of Cyclobis(paraquat-p-phenylene)" , 1997 .
[22] J. Fraser Stoddart,et al. Controlling Self‐Assembly , 1997 .
[23] Gautam R. Desiraju,et al. The C-h···o hydrogen bond: structural implications and supramolecular design. , 1996, Accounts of chemical research.
[24] A. Hamilton,et al. Hydrogen bonding control of self-assembly: Simple isophthalic acid derivatives form cyclic hexameric aggregates , 1994 .
[25] Douglas Philp,et al. Self‐Assembly in Natural and Unnatural Systems , 1996 .
[26] David J. Williams,et al. Molecular meccano. 1. [2]Rotaxanes and a [2]catenane made to order , 1992 .
[27] S. Stupp,et al. Supramolecular Materials: Self-Organized Nanostructures , 1997, Science.
[28] J. F. Stoddart,et al. Slippage - a simple and efficient way to self-assemble [n]rotaxanes , 1997 .
[29] James D. Wuest,et al. Use of hydrogen bonds to control molecular aggregation. Self-assembly of three-dimensional networks with large chambers , 1991 .
[30] David J. Williams,et al. An Interwoven Supramolecular Cage , 1997 .
[31] Jeffrey S. Moore. Shape-Persistent Molecular Architectures of Nanoscale Dimension , 1997 .
[32] G. Tsoucaris. Current challenges on large supramolecular assemblies , 1999 .
[33] J. Fréchet,et al. Functional polymers and dendrimers: reactivity, molecular architecture, and interfacial energy. , 1994, Science.
[34] Steven C. Zimmerman,et al. Dendrimers in Supramolecular Chemistry: From Molecular Recognition to Self-Assembly. , 1997, Chemical reviews.
[35] S. Martínez‐Carrera,et al. The crystal structure of isophthalic acid , 1972 .
[36] J. Fraser Stoddart,et al. Rotaxane or Pseudorotaxane? That Is the Question!† , 1998 .
[37] M. C. Feiters,et al. A SUPRAMOLECULAR ANALOG OF THE PHOTOSYNTHETIC SPECIAL PAIR , 1997 .
[38] G. Whitesides,et al. Molecular self-assembly and nanochemistry: a chemical strategy for the synthesis of nanostructures. , 1991, Science.
[39] D. Tomalia,et al. Genealogically directed synthesis: Starburst/cascade dendrimers and hyperbranched structures , 1993 .
[40] Jonathan S. Lindsey,et al. Self-Assembly in Synthetic Routes to Molecular Devices. Biological Principles and Chemical Perspectives: A Review , 1991 .
[41] David J. Williams,et al. Doubly Encircled and Double‐Stranded Pseudorotaxanes , 1995 .
[42] David J. Williams,et al. Dialkylammonium Ion/Crown Ether Complexes: The Forerunners of a New Family of Interlocked Molecules , 1995 .
[43] Raymond E. Davis,et al. Patterns in Hydrogen Bonding: Functionality and Graph Set Analysis in Crystals , 1995 .
[44] J. F. Stoddart,et al. Self-Assembly, Spectroscopic, and Electrochemical Properties of [n]Rotaxanes1 , 1996 .
[45] E. Corey,et al. The Logic of Chemical Synthesis , 1989 .
[46] J. F. Stoddart,et al. Self-assembling wholly synthetic systems , 1996 .
[47] Yoshito Kishi,et al. Synthesis of Palytoxin from Palytoxin Carboxylic Acid , 1994 .
[48] J. Rebek,et al. Self-Assembling Capsules. , 1997, Chemical reviews.
[49] David E Reichert,et al. Self-Assembling Dendrimers , 1996, Science.
[50] G. Whitesides,et al. Solid-State Structures of Hydrogen-Bonded Tapes Based on Cyclic Secondary Diamides , 1994 .
[51] Douglas Philp,et al. Self-Assembly in Organic Synthesis , 1992 .
[52] David J. Williams,et al. Anion‐Assisted Self‐Assembly , 1997 .
[53] D. Mingos,et al. Multidimensional crystal engineering of bifunctional metal complexes containing complementary triple hydrogen bonds , 1995 .
[54] M. Zaworotko. Crystal engineering of diamondoid networks , 1994 .
[55] K. Seddon,et al. The hydrogen bond and crystal engineering , 1994 .
[56] D. Seebach,et al. Organic Synthesis—Where now? , 1990 .