Statistical gap Tauberian theorems in metric spaces
暂无分享,去创建一个
[1] Peter Cass,et al. Classical and modern methods in summability , 2000 .
[2] M. K. Khan,et al. Statistical extensions of some classical Tauberian theorems , 2000 .
[3] N. Levinson. Gap and Density Theorems , 1940 .
[4] K. Zeller,et al. On Borel’s method of summability , 1960 .
[5] J. Littlewood,et al. A Further Note on the Converse of Abel's Theorem , 1926 .
[6] Lückenumkehrsätze und Lückenperfektheit , 1956 .
[7] Characterizations of density Tauberian theorems , 1998 .
[8] H. Fast,et al. Sur la convergence statistique , 1951 .
[9] Tauberian Theorems for Integrals II , 1972 .
[10] N. Bingham. TAUBERIAN THEOREMS AND THE CENTRAL LIMIT THEOREM , 1981 .
[11] E. Landau. Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheorie , 1930 .
[12] Über das Eulersche Summierungsverfahren , 1922 .
[13] J. A. Fridy,et al. A MATRIX CHARACTERIZATION OF STATISTICAL CONVERGENCE , 1991 .
[14] N. Bingham. Tauberian Theorems for Summability Methods of Random‐Walk Type , 1984 .
[15] J. A. Fridy,et al. ON STATISTICAL CONVERGENCE , 1985 .
[16] J. E. Littlewood,et al. The Converse of Abel's Theorem on Power Series , 1911 .
[17] J. Littlewood,et al. Theorems concerning the summability of series by boreľs exponential method , 1916 .
[18] G. H. Hardy,et al. Tauberian Theorems Concerning Power Series and Dirichlet's Series whose Coefficients are Positive* , 1914 .
[19] Paul Turán,et al. On a new method of analysis and its applications , 1984 .
[20] D. Gaier. Der allgemeine Lückenumkehrsatz für das Borel-Verfahren , 1965 .
[21] G. Lorentz. Direct Theorems on Methods of Summability , 1949, Canadian Journal of Mathematics.
[22] G. Hardy. Theorems Relating to the Summability and Convergence of Slowly Oscillating Series , 1910 .
[23] M. K. Khan,et al. Tauberian theorems via statistical convergence , 1998 .
[24] E. Landau,et al. Über die Bedeutung einiger neuen Grenzwertsätze der Herren Hardy und Axer , 2022 .
[25] Robert Schmidt,et al. Über divergente Folgen und lineare Mittelbildungen , 1925 .
[26] D. Gaier. On the Coefficients and the Growth of Gap Power Series , 1966 .
[27] N. Bingham. Tauberian theorems for Jakimovski and Karamata-Stirling methods , 1988 .
[28] A. J. Stam,et al. Tauberian theorems for limitation methods admitting a central limit theorem , 1976 .
[29] Amnon Jakimovski,et al. A generalization of the Lototsky method of summability. , 1959 .