Literature Review: Materials with Negative Poisson's Ratios and Potential Applications to Aerospace and Defence

Abstract : An auxetic material exhibits exceptional features, which are different from a conventional material. That is, the auxetic material gets fatter when it is stretched, or becomes smaller when it is compressed, because it has a negative Poisson's ratio. This report briefly reviews the latest advances in research work in auxetic materials, structural mechanisms, properties and application, particularly in aerospace and defense.

[1]  K. Evans,et al.  Strain dependent densification during indentation in auxetic foams , 1999 .

[2]  K. Evans,et al.  Novel fabrication route for auxetic polyethylene. Part 1. processing and microstructure , 2005 .

[3]  David I. G. Jones Handbook of Viscoelastic Vibration Damping , 2001 .

[4]  Kenneth E. Evans,et al.  Indentation Resilience of Conventional and Auxetic Foams , 1998 .

[5]  R. Lakes,et al.  Non-linear properties of polymer cellular materials with a negative Poisson's ratio , 1992 .

[6]  P. Prendergast,et al.  Examination of acoustic behavior of negative poisson's ratio materials , 1991 .

[7]  M. Ashby,et al.  Cellular solids: Structure & properties , 1988 .

[8]  Novel variations in the microstructure of the auxetic microporous ultra‐high molecular weight polyethylene. Part 1: Processing and microstructure , 2000 .

[9]  Kenneth E. Evans,et al.  The static and dynamic moduli of auxetic microporous polyethylene , 1992 .

[10]  Gene Simmons,et al.  The effect of saturation on velocity in low porosity rocks , 1969 .

[11]  R. Lakes,et al.  Design of a fastener based on negative Poisson's ratio foam , 1991 .

[12]  Joseph N. Grima,et al.  An alternative explanation for the negative Poisson's ratios in auxetic foams , 2005 .

[13]  A. Alderson A triumph of lateral thought , 1999 .

[14]  K. Evans,et al.  The fabrication of microporous polyethylene having a negative Poisson's ratio , 1992 .

[15]  Kenneth E. Evans,et al.  Tensile network microstructures exhibiting negative Poisson's ratios , 1989 .

[16]  Kenneth E. Evans,et al.  Auxetic polyethylene: The effect of a negative poisson's ratio on hardness , 1994 .

[17]  W. A. Smith,et al.  Optimizing electromechanical coupling in piezocomposites using polymers with negative Poisson's ratio , 1991, IEEE 1991 Ultrasonics Symposium,.

[18]  K. E. EVANS,et al.  Molecular network design , 1991, Nature.

[19]  Taeyong Lee,et al.  Re-entrant transformation methods in closed cell foams , 1996 .

[20]  Marco Avellaneda,et al.  Calculating the performance of 1–3 piezoelectric composites for hydrophone applications: An effective medium approach , 1998 .

[21]  Roderic S. Lakes,et al.  Fracture toughness of re-entrant foam materials with a negative Poisson's ratio: experiment and analysis , 1996 .

[22]  B. D. Caddock,et al.  Microporous materials with negative Poisson's ratios. II. Mechanisms and interpretation , 1989 .

[23]  B. D. Caddock,et al.  Microporous materials with negative Poisson's ratios. I. Microstructure and mechanical properties , 1989 .

[24]  R. Lakes Advances in negative Poisson's ratio materials , 1993 .

[25]  Fabrizio Scarpa,et al.  Dynamic properties of high structural integrity auxetic open cell foam , 2004 .

[26]  Roderic S. Lakes,et al.  Viscoelastic behaviour of composite materials with conventional- or negative-Poisson's-ratio foam as one phase , 1993 .

[27]  Satish Kumar,et al.  Textile Fibres Engineered From Molecular Auxetic Polymers , 2006 .

[28]  Morihiko Nakamura,et al.  Fundamental Properties of Intermetallic Compounds , 1995 .

[29]  Kenneth E. Evans,et al.  The strain dependent indentation resilience of auxetic microporous polyethylene , 2000 .

[30]  K. Evans,et al.  Auxetic Materials : Functional Materials and Structures from Lateral Thinking! , 2000 .

[31]  R. Lakes,et al.  Making and Characterizing Negative Poisson's Ratio Materials , 2002 .

[32]  K. Evans,et al.  An experimental study of ultrasonic attenuation in microporous polyethylene , 1997 .

[33]  Roderic S. Lakes,et al.  Micromechanical Analysis of Dynamic Behavior of Conventional and Negative Poisson’s Ratio Foams , 1996 .

[34]  Kenneth E. Evans,et al.  The effects of powder morphology on the processing of auxetic polypropylene (PP of negative Poisson's ratio) , 1996 .

[35]  Y. Fung Foundations of solid mechanics , 1965 .

[36]  Kenneth E. Evans,et al.  Auxetic materials: the positive side of being negative , 2000 .

[37]  R. Baughman,et al.  Negative Poisson's ratios as a common feature of cubic metals , 1998, Nature.

[38]  K. Evans,et al.  Novel variations in the microstructure of auxetic ultra‐high molecular weight polyethylene. Part 2: Mechanical properties , 2000 .

[39]  R. Lakes,et al.  Indentability of Conventional and Negative Poisson's Ratio Foams , 1992 .

[40]  A. Alderson,et al.  Auxetic polypropylene fibres:Part 1 - Manufacture and characterisation , 2002 .

[41]  K. Evans,et al.  Microscopic examination of the microstructure and deformation of conventional and auxetic foams , 1997 .

[42]  S. K. Maiti,et al.  Fracture toughness of brittle cellular solids , 1984 .

[43]  R. Lakes Foam Structures with a Negative Poisson's Ratio , 1987, Science.

[44]  J. Cherfas Stretching the Point: New materials that get fatter--rather than thinner--when they're stretched may have some revolutionary implications. , 1990, Science.

[45]  Kenneth E. Evans,et al.  How to make auxetic fibre reinforced composites , 2005 .

[46]  J. B. Park,et al.  Negative Poisson's ratio polymeric and metallic foams , 1988 .

[47]  Kenneth E. Evans,et al.  The effect of the processing parameters on the fabrication of auxetic polyethylene , 1995, Journal of Materials Science.