Reverse‐time migration from rugged topography using irregular, unstructured mesh

ABSTRACT We developed a reverse‐time migration scheme that can image regions with rugged topography without requiring any approximations by adopting an irregular, unstructured‐grid modelling scheme. This grid, which can accurately describe surface topography and interfaces between high‐velocity‐contrast regions, is generated by Delaunay triangulation combined with the centroidal Voronoi tessellation method. The grid sizes vary according to the migration velocities, resulting in significant reduction of the number of discretized nodes compared with the number of nodes in the conventional regular‐grid scheme, particularly in the case wherein high near‐surface velocities exist. Moreover, the time sampling rate can be reduced substantially. The grid method, together with the irregular perfectly matched layer absorbing boundary condition, enables the proposed scheme to image regions of interest using curved artificial boundaries with fewer discretized nodes. We tested the proposed scheme using the 2D SEG Foothill synthetic dataset.

[1]  Jincheng Xu,et al.  Migration from 3D irregular surfaces: A prestack time migration approach , 2012 .

[2]  Qiang Du,et al.  Grid generation and optimization based on centroidal Voronoi tessellations , 2002, Appl. Math. Comput..

[3]  Jon F. Claerbout,et al.  Smoothing imaging condition for shot-profile migration , 2007 .

[4]  Jianfeng Zhang,et al.  Elastic wave modelling in heterogeneous media with high velocity contrasts , 2004 .

[5]  Yue Wang,et al.  REVERSE-TIME MIGRATION , 1999 .

[6]  Charles L. Lawson,et al.  Properties of n-dimensional triangulations , 1986, Comput. Aided Geom. Des..

[7]  Hongwei Gao,et al.  Implementation of perfectly matched layers in an arbitrary geometrical boundary for elastic wave modelling , 2008 .

[8]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[9]  J. Sun,et al.  Practical issues in reverse time migration: true amplitude gathers, noise removal and harmonic source encoding , 2009 .

[10]  Tariq Alkhalifah,et al.  Straight-rays redatuming: A fast and robust alternative to wave-equation-based datuming , 2006 .

[11]  J. W. Wiggins Kirchhoff integral extrapolation and migration of nonplanar data , 1984 .

[12]  Hongwei Gao,et al.  Irregular perfectly matched layers for 3D elastic wave modeling , 2011 .

[13]  G. McMechan,et al.  Topographic corrections to slowness measurements in parsimonious migration of land data , 2007 .

[14]  V. Shtivelman,et al.  Datum correction by wave-equation extrapolation , 1988 .

[15]  Yu Zhang,et al.  Practical issues of reverse time migration: true-amplitude gathers, noise removal and harmonic-source encoding , 2008 .

[16]  L. B. Liu,et al.  Ground-penetrating radar finite-difference reverse time migration from irregular surface by flattening surface topography , 2014, 2016 16th International Conference on Ground Penetrating Radar (GPR).

[17]  M. Reshef Depth migration from irregular surfaces with depth extrapolation methods , 1991 .

[18]  William W. Symes,et al.  Reverse time migration with optimal checkpointing , 2007 .

[19]  S. Gray,et al.  Direct downward continuation from topography using explicit wavefield extrapolation , 2009 .

[20]  Ted D. Blacker,et al.  Paving: A new approach to automated quadrilateral mesh generation , 1991 .

[21]  C. Tsogka,et al.  Application of the perfectly matched absorbing layer model to the linear elastodynamic problem in anisotropic heterogeneous media , 2001 .

[22]  G. A. McMechan,et al.  Implicit static corrections in prestack migration of common‐source data , 1990 .

[23]  J. Virieux P-SV wave propagation in heterogeneous media: Velocity‐stress finite‐difference method , 1986 .

[24]  A. Berkhout,et al.  Applied Seismic Wave Theory , 1987 .

[25]  G. McMechan,et al.  Reverse-time migration of offset vertical seismic profiling data using the excitation-time imaging condition , 1986 .

[26]  George A. McMechan,et al.  Prestack processing of land data with complex topography , 1995 .

[27]  Hongwei Gao,et al.  Parallel 3‐D simulation of seismic wave propagation in heterogeneous anisotropic media: a grid method approach , 2006 .

[28]  B. Nguyen,et al.  Excitation amplitude imaging condition for prestack reverse-time migration , 2013 .

[29]  Qiang Du,et al.  Centroidal Voronoi Tessellations: Applications and Algorithms , 1999, SIAM Rev..

[30]  R. Clapp Reverse time migration with random boundaries , 2009 .

[31]  Zhang Jianfeng,et al.  P–SV-wave propagation in heterogeneous media: grid method , 1999 .

[32]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[33]  N. Whitmore Iterative Depth Migration By Backward Time Propagation , 1983 .

[34]  Martin Tygel,et al.  Pulse distortion in depth migration , 1994 .