Somite number and vertebrate evolution.

Variation in segment number is an important but neglected feature of vertebrate evolution. Some vertebrates have as few as six trunk vertebrae, while others have hundreds. We examine this phenomenon in relation to recent models of evolution and development. Surprisingly, differences in vertebral number are foreshadowed by different somite counts at the tailbud stage, thought to be a highly conserved (phylotypic) stage. Somite number therefore violates the 'developmental hourglass' model. We argue that this is because somitogenesis shows uncoupling or dissociation from the conserved positional field encoded by genes of the zootype. Several other systems show this kind of dissociation, including limbs and feathers. Bmp-7 expression patterns demonstrate dissociation in the chick pharyngeal arches. This makes it difficult to recognise a common stage of pharyngeal development or 'pharyngula' in all species. Rhombomere number is more stable during evolution than somite number, possibly because segmentation and positional specification in the hindbrain are relatively interdependent. Although developmental mechanisms are strongly conserved, dissociation allows at least some major evolutionary changes to be generated in phylotypic stages.

[1]  Y. Hatada,et al.  Relationships between mesoderm induction and the embryonic axes in chick and frog embryos. , 1992, Development (Cambridge, England). Supplement.

[2]  B. Blumberg,et al.  Tail formation as a continuation of gastrulation: the multiple cell populations of the Xenopus tailbud derive from the late blastopore lip. , 1993, Development.

[3]  L. Holland,et al.  Engrailed Expression during Development of a Lamprey, Lampetra japonica: A Possible Clue to Homologies between Agnathan and Gnathostome Muscles of the Mandibular Arch , 1993, Development, growth & differentiation.

[4]  W. Tavolga Embryonic development of the platyfish (Platypoecilus), the swordtail (Xiphophorus), and their hybrids. Bulletin of the AMNH ; v. 94, article 4 , 1949 .

[5]  C. Kimmel,et al.  Development of segmentation in zebrafish. , 1988, Development.

[6]  D. Duboule Temporal colinearity and the phylotypic progression: a basis for the stability of a vertebrate Bauplan and the evolution of morphologies through heterochrony. , 1994, Development (Cambridge, England). Supplement.

[7]  S. Carroll,et al.  Conservation of wingless patterning functions in the short-germ embryos of Tribolium castaneum , 1994, Nature.

[8]  P. Tam,et al.  The control of somitogenesis in mouse embryos. , 1981, Journal of embryology and experimental morphology.

[9]  D. Weisblat,et al.  Segmentation in leech development. , 1988, Development.

[10]  M. Frasch,et al.  tinman and bagpipe: two homeo box genes that determine cell fates in the dorsal mesoderm of Drosophila. , 1993, Genes & development.

[11]  A. Raynaud Données préliminaires sur l'allongement du corps et la somitogenèse chez les jeunes embryons d'orvet (Anguis fragilis, L.) et de lézard vert (Lacerta viridis, Laur.) , 1994 .

[12]  M. Scott,et al.  A class act: conservation of homeodomain protein functions. , 1994, Development (Cambridge, England). Supplement.

[13]  S. Schneider-Maunoury,et al.  Segmental and neuronal architecture of the hindbrain of Krox-20 mouse mutants. , 1997, Development.

[14]  R. Sammouri,et al.  Développement embryonnaire de Typhlonectes compressicaudus (Amphibia, Gymnophiona) , 1990 .

[15]  J. Cooke The problem of periodic patterns in embryos. , 1981, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[16]  N. Williams,et al.  Old head on young shoulders , 1996, Nature.

[17]  James Hanken,et al.  There is no highly conserved embryonic stage in the vertebrates: implications for current theories of evolution and development , 1997, Anatomy and Embryology.

[18]  R. Krumlauf,et al.  The zinc finger gene Krox20 regulates HoxB2 (Hox2.8) during hindbrain segmentation , 1993, Cell.

[19]  D. Price,et al.  Presenilin 1 is required for Notch 1 and Dll1 expression in the paraxial mesoderm , 1997, Nature.

[20]  M. Scott Intimations of a creature , 1994, Cell.

[21]  A. M. Lucas,et al.  Avian anatomy : integument , 1974 .

[22]  J. Rossant,et al.  Conservation of the Notch signalling pathway in mammalian neurogenesis. , 1997, Development.

[23]  L. Wolpert,et al.  Mechanisms of pigment pattern formation in the quail embryo , 1990 .

[24]  J. M. W. Slack,et al.  The zootype and the phylotypic stage , 1993, Nature.

[25]  L. Trueb,et al.  Biology of Amphibians , 1986 .

[26]  R. Krumlauf,et al.  Segmental expression of Hox-2 homoeobox-containing genes in the developing mouse hindbrain , 1989, Nature.

[27]  Andrew Lumsden,et al.  Patterning the Vertebrate Neuraxis , 1996, Science.

[28]  L. Wolpert,et al.  Pigment pattern expression in the plumage of the quail embryo and the quail-chick chimaera , 1989 .

[29]  Peter Gruss,et al.  Homeotic transformations of murine vertebrae and concomitant alteration of Hox codes induced by retinoic acid , 1991, Cell.

[30]  A. Wood,et al.  Patterns of cell behaviour underlying somitogenesis and notochord formation in intact vertebrate embryos , 1994, Developmental dynamics : an official publication of the American Association of Anatomists.

[31]  J. McLachlan The effect of 6-aminonicotinaniide on limb development , 1980 .

[32]  L. Wolpert Positional information and pattern formation. , 1981, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[33]  J. Campos-Ortega,et al.  Expression domains of a zebrafish homologue of the Drosophila pair-rule gene hairy correspond to primordia of alternating somites. , 1996, Development.

[34]  B. Christ,et al.  From somites to vertebral column. , 1992, Annals of anatomy = Anatomischer Anzeiger : official organ of the Anatomische Gesellschaft.

[35]  D. Summerbell,et al.  Positional signalling and specification of digits in chick limb morphogenesis , 1975, Nature.

[36]  R. Raff The Shape of Life , 1996 .

[37]  P. Ingham,et al.  Boundaries and fields in early embryos , 1992, Cell.

[38]  C. Stern,et al.  Fate mapping and cell lineage analysis of Hensen's node in the chick embryo. , 1991, Development.

[39]  D. Wilkinson,et al.  Progressive spatial restriction of Sek-1 and Krox-20 gene expression during hindbrain segmentation. , 1996, Developmental biology.

[40]  G. Lyons,et al.  Recombinant limbs as a model to study homeobox gene regulation during limb development. , 1994, Developmental biology.

[41]  R. Keynes,et al.  Periodic segmental anomalies induced by heat shock in the chick embryo are associated with the cell cycle. , 1989, Development.

[42]  D. Wilkinson,et al.  Expression of truncated Sek-1 receptor tyrosine kinase disrupts the segmental restriction of gene expression in the Xenopus and zebrafish hindbrain. , 1995, Development.

[43]  Craig Nelson,et al.  Hox genes and the evolution of vertebrate axial morphology. , 1995, Development.

[44]  J. Slack,et al.  The Xenopus laevis tail-forming region , 1995 .

[45]  D. Davidson The mechanism of feather pattern development in the chick. 1. The time of determination of feather position. , 1983, Journal of embryology and experimental morphology.

[46]  O. Lowenstein,et al.  Life of Vertebrates , 1962, Nature.

[47]  D. Wilkinson,et al.  A receptor protein tyrosine kinase implicated in the segmental patterning of the hindbrain and mesoderm. , 1992, Development.

[48]  M. Richardson,et al.  Heterochrony and the phylotypic period. , 1995, Developmental biology.

[49]  B. Hogan,et al.  Expression of bone morphogenetic protein-4 (BMP-4), bone morphogenetic protein-7 (BMP-7), fibroblast growth factor-8 (FGF-8) and sonic hedgehog (SHH) during branchial arch development in the chick , 1995, Mechanisms of Development.

[50]  V. G. Springer,et al.  A Survey of Vertebral Numbers in Sharks , 1964 .

[51]  J. Dufaure,et al.  Table de developpement de la vipere aspic: Vipera aspis L , 1968 .

[52]  Ernst Haeckel Anthropogenie oder Entwicklungsgeschichte des Menschen , 1877 .

[53]  A. Force,et al.  valentino: a zebrafish gene required for normal hindbrain segmentation. , 1996, Development.

[54]  D. Burt,et al.  Molecular cloning and expression of bone morphogenetic protein-7 in the chick epiphyseal growth plate. , 1994, Journal of molecular endocrinology.

[55]  L. Wolpert Positional information revisited. , 1989, Development.

[56]  G. Barsh,et al.  Altered rhombomere-specific gene expression and hyoid bone differentiation in the mouse segmentation mutant, kreisler (kr). , 1993, Development.

[57]  M M Newhouse,et al.  Analysis of the vestigial tail mutation demonstrates that Wnt-3a gene dosage regulates mouse axial development. , 1996, Genes & development.

[58]  L. Wolpert,et al.  Gene expression, polarising activity and skeletal patterning in reaggregated hind limb mesenchyme. , 1995, Development.

[59]  R. Raff Understanding Evolution: The Next Step. (Book Reviews: The Shape of Life. Genes, Development, and the Evolution of Animal Form.) , 1996 .

[60]  E. Robertis,et al.  The ancestry of segmentation , 1997, Nature.

[61]  Ralph I. Smith,et al.  Embryology and Phylogeny in Annelids and Arthropods , 1974 .

[62]  D. SUMMERBELL,et al.  Positional Information in Chick Limb Morphogenesis , 1973, Nature.

[63]  S. Gaunt Conservation in the Hox code during morphological evolution. , 1994, The International journal of developmental biology.

[64]  L. Wolpert,et al.  Pigment patterns in neural crest chimeras constructed from quail and guinea fowl embryos. , 1991, Developmental biology.

[65]  R. Krumlauf,et al.  Hox codes and positional specification in vertebrate embryonic axes. , 1992, Annual review of cell biology.

[66]  M. Ridley Triumph of the embryo? , 1992, Nature.

[67]  L. Silver,et al.  Tbx6, a mouse T-Box gene implicated in paraxial mesoderm formation at gastrulation. , 1996, Developmental biology.

[68]  J. Rossant,et al.  Notch1 is required for the coordinate segmentation of somites. , 1995, Development.

[69]  Matthew H. Nitecki,et al.  Some Other Books of Interest. (Book Reviews: Extinctions; Orders and Families of Recent Mammals of the World) , 1985 .

[70]  Kurt E. Johnson,et al.  Normal Table of Xenopus Laevis , 1968, The Yale Journal of Biology and Medicine.

[71]  J. Gerhart,et al.  Cells, Embryos and Evolution , 1997 .

[72]  R. Keynes,et al.  Heat shock causes repeated segmental anomalies in the chick embryo. , 1988, Development.

[73]  C. Tabin,et al.  Why we have (only) five fingers per hand: hox genes and the evolution of paired limbs. , 1992, Development.

[74]  J. Cooke,et al.  Control of somite number during morphogenesis of a vertebrate, Xenopus laevis , 1975, Nature.

[75]  C. J. Wallis PART VI – EMBRYOLOGY AND DEVELOPMENT , 1966 .

[76]  J. McLachlan The effect of 6-aminonicotinamide on limb development. , 1980, Journal of embryology and experimental morphology.

[77]  N. Williams,et al.  Sequence and embryonic expression of the amphioxus engrailed gene (AmphiEn): the metameric pattern of transcription resembles that of its segment-polarity homolog in Drosophila. , 1997, Development.

[78]  A. Lassar,et al.  Induction of avian cardiac myogenesis by anterior endoderm. , 1995, Development.

[79]  Joseph Needham,et al.  Biochemistry and morphogenesis , 1943 .

[80]  R. Elinson Change in developmental patterns: embryos of amphibians with large eggs , 1986 .

[81]  M. H. Angelis,et al.  Maintenance of somite borders in mice requires the Delta homologue Dll1 , 1997, Nature.

[82]  D. S. Townsend,et al.  Direct development in Eleutherodactylus coqui (Anura: Leptodactylidae): a staging table , 1985 .

[83]  R. Krumlauf,et al.  Ectopic Hoxa-1 induces rhombomere transformation in mouse hindbrain. , 1994, Development.

[84]  R. Krumlauf Evolution of the vertebrate Hox homeobox genes , 1992, BioEssays : news and reviews in molecular, cellular and developmental biology.

[85]  A J Verbout,et al.  The development of the vertebral column. , 1985, Advances in anatomy, embryology, and cell biology.

[86]  R. Keynes,et al.  A cell lineage analysis of segmentation in the chick embryo. , 1988, Development.