Fractal Dimension of Trajectory as Invariant of Genetic Algorithms
暂无分享,去创建一个
Zbigniew Michalewicz | Witold Kosinski | Stefan Kotowski | Jakub Nowicki | Bartosz Przepiórkiewicz | Z. Michalewicz | W. Kosinski | S. Kotowski | Jakub Nowicki | Bartosz Przepiórkiewicz
[1] Michael D. Vose,et al. Modeling Simple Genetic Algorithms , 1995, Evolutionary Computation.
[2] Thomas M. English. No more lunch: analysis of sequential search , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).
[3] Geon Ho Choe,et al. Computational Ergodic Theory , 2005 .
[4] Zbigniew Michalewicz,et al. Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.
[5] E. Ott. Chaos in Dynamical Systems: Contents , 1993 .
[6] Gregory L. Baker,et al. Chaotic Dynamics: An Introduction , 1990 .
[7] David H. Wolpert,et al. No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..
[8] D. Ornstein. Ergodic theory, randomness, and dynamical systems , 1974 .
[9] Marc Toussaint,et al. A No-Free-Lunch Theorem for Non-Uniform Distributions of Target Functions , 2004 .
[10] D. Ornstein,et al. On isomorphism of weak Bernoulli transformations , 1970 .
[11] Hartmut Jürgens,et al. Chaos and Fractals: New Frontiers of Science , 1992 .
[12] W. Szlenk,et al. An introduction to the theory of smooth dynamical systems , 1984 .