Amorphous Silicon-Based Solar Cells

Crystalline semiconductors are very well known, including silicon (the basis of the integrated circuits used in modern electronics), Ge (the material of the first transistor), GaAs and the other III-V compounds (the basis for many light emitters), and CdS (often used as a light sensor). In crystals, the atoms are arranged in near-perfect, regular arrays or lattices. Of course, the lattice must be consistent with the underlying chemical bonding properties of the atoms. For example, a silicon atom forms four covalent bonds to neighboring atoms arranged symmetrically about it. This “tetrahedral” configuration is perfectly maintained in the “diamond” lattice of crystal silicon.

[1]  W. Beyer,et al.  Hydrogen stability in amorphous germanium films , 1991 .

[2]  Y. Sakamoto Measurement of Power Transfer Efficiency from Microwave Field to Plasma under ECR Condition , 1977 .

[3]  Hellmut Fritzsche,et al.  Development in Understanding and Controlling the Staebler-Wronski Effect in a-Si:H , 2001 .

[4]  Kenji Yamamoto,et al.  Thin Film Poly-Si Solar Cell on Glass Substrate Fabricated at Low Temperature , 1998 .

[5]  F. Abelès Optical Properties of Solids , 1972 .

[6]  Marc Burgelman,et al.  Modeling thin‐film PV devices , 2004 .

[7]  J. Bullot,et al.  Physics of Amorphous Silicon–Carbon Alloys , 1987 .

[8]  Bernd Rech,et al.  Deposition of highly efficient microcrystalline silicon solar cells under conditions of low H2 dilution: the role of the transient depletion induced incubation layer , 2007 .

[9]  R. Chittick,et al.  The Preparation and Properties of Amorphous Silicon , 1969 .

[10]  Mehul C. Raval,et al.  Solar cells , 2019, Flexible Electronics, Volume 3.

[11]  X. Deng,et al.  Study of a-SiGe:H films and n?i?p devices used in high efficiency triple junction solar cells , 2002 .

[12]  Frank J. Kampas,et al.  An optical emission study of the glow-discharge deposition of hydrogenated amorphous silicon from argon-silane mixtures , 1983 .

[13]  A. Matsuda,et al.  Deposition of ultrapure hydrogenated amorphous silicon , 1999 .

[14]  Sigurd Wagner,et al.  Saturation of the light‐induced defect density in hydrogenated amorphous silicon , 1989 .

[15]  R. R. Arya,et al.  Amorphous silicon PV module manufacturing at BP solar , 2002 .

[16]  H. Okamoto,et al.  Amorphous and heterogeneous silicon thin films: Fundamentals to devices -- 1999. Materials Research Society symposium proceedings: Volume 557 , 1999 .

[17]  Qi Wang,et al.  Conducting polymer and hydrogenated amorphous silicon hybrid solar cells , 2005 .

[18]  D. Staebler,et al.  Reversible conductivity changes in discharge‐produced amorphous Si , 1977 .

[19]  A. Shah,et al.  Thin‐film silicon solar cell technology , 2004 .

[20]  E. Yablonovitch,et al.  Limiting efficiency of silicon solar cells , 1984, IEEE Transactions on Electron Devices.

[21]  Santos,et al.  Light-enhanced hydrogen motion in a-Si:H. , 1991, Physical review letters.

[22]  R. Schropp,et al.  Incorporation of p-type microcrystalline silicon films in amorphous silicon based solar cells in a superstrate structure , 1998 .

[23]  Lee,et al.  Modulated electron-spin-resonance measurements and defect correlation energies in amorphous silicon. , 1992, Physical review letters.

[24]  R. Gordon,et al.  Textured tin oxide films produced by atmospheric pressure chemical vapor deposition from tetramethyltin and their usefulness in producing light trapping in thin film amorphous silicon solar cells , 1989 .

[25]  M. Isomura,et al.  Influence of Oxygen and Nitrogen in the Intrinsic Layer of a-Si:H Solar Cells , 1996 .

[26]  M. Fox Optical Properties of Solids , 2010 .

[27]  Keith Emery,et al.  Modeled performance of polycrystalline thin‐film tandem solar cells , 2002 .

[28]  Yuanmin Li Amorphous Silicon-Carbon Alloys for Solar Cells , 1993 .

[29]  P. .. Bhat,et al.  High-efficiency amorphous silicon p-i-n solar cells deposited from disilane at rates up to 2 nm/s using VHF discharges , 1989 .

[30]  Reinhard Carius,et al.  Microcrystalline silicon solar cells deposited at high rates , 2005 .

[31]  Y. Ichikawa,et al.  Effect of p/i interface layer on dark J‐V characteristics and Voc in p‐i‐n a‐Si solar cells , 1990 .

[32]  J. Jasinski,et al.  Detection of SiH2 in silane and disilane glow discharges by frequency modulation absorption spectroscopy , 1984 .

[33]  Michio Kondo,et al.  High-rate deposition of microcrystalline silicon p-i-n solar cells in the high pressure depletion regime , 2008 .

[34]  R.A.C.M.M. van Swaaij,et al.  Modeling of light-induced degradation of amorphous silicon solar cells , 2008 .

[35]  A. Gregg,et al.  Performance analysis of large scale, amorphous silicon, photovoltaic power systems , 2005, Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005..

[36]  Bolko von Roedern,et al.  Temperature‐induced changes in the performance of amorphous silicon multi‐junction modules in controlled light‐soaking , 1999 .

[37]  J. Mort The Anatomy of Xerography: Its Invention and Evolution , 1989 .

[38]  Arizona State University,et al.  Self-organization and the physics of glassy networks , 2005, cond-mat/0502312.

[39]  Robert A. Street,et al.  Technology and Applications of Amorphous Silicon , 2000 .

[40]  Y. Hishikawa,et al.  Stabilized 9% efficiency of large-area (/spl sim/5000cm/sup 2/) a-Si/a-SiGe tandem submodules using high-rate deposition , 2000, Conference Record of the Twenty-Eighth IEEE Photovoltaic Specialists Conference - 2000 (Cat. No.00CH37036).

[41]  A. Fejfar,et al.  Optical absorption and light scattering in microcrystalline silicon thin films and solar cells , 2000 .

[42]  R. Collins,et al.  Extended phase diagrams for guiding plasma-enhanced chemical vapor deposition of silicon thin films for photovoltaics applications , 2002 .

[43]  J. Loureiro,et al.  Electron energy distributions and excitation rates in high-frequency argon discharges , 1983 .

[44]  M. Zeman,et al.  Amorphous and Microcrystalline Silicon Solar Cells: Modeling, Materials and Device Technology , 1998 .

[45]  J. Burdick,et al.  Spectral response and I–V measurements of tandem amorphous-silicon alloy solar cells , 1986 .

[46]  Steve Hegedus,et al.  Thin film solar modules: the low cost, high throughput and versatile alternative to Si wafers , 2006 .

[47]  Metastable defect migration under high carrier injection in hydrogenated amorphous silicon p-i-n solar cells , 2005 .

[48]  Michael F. Shlesinger,et al.  Time‐Scale Invariance in Transport and Relaxation , 1991 .

[49]  H. Stiebig,et al.  a-SiGe:H based solar cells with graded absorption layer , 1998 .

[50]  B. G. Brooks,et al.  Disorder and the Optical-Absorption Edge of Hydrogenated Amorphous Silicon , 1981 .

[51]  A. Matsuda,et al.  High-rate microcrystalline silicon deposition for p–i–n junction solar cells , 2006 .

[52]  Joshua M. Pearce,et al.  Optimization of open circuit voltage in amorphous silicon solar cells with mixed-phase "amorphous+nanocrystalline… p-type contacts of low nanocrystalline content , 2007 .

[53]  S. Ovshinsky,et al.  Conversion process for passivating current shunting paths in amorphous silicon alloy solar cells , 1988 .

[54]  J. C. Phillips,et al.  Topology of covalent non-crystalline solids I: Short-range order in chalcogenide alloys , 1979 .

[55]  Nicolas Wyrsch,et al.  Material and solar cell research in microcrystalline silicon , 2003 .

[56]  E. Schiff,et al.  Hole drift mobility measurements in amorphous silicon‐carbon alloys , 1994 .

[57]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[58]  Bernd Rech,et al.  Challenges in microcrystalline silicon based solar cell technology , 2006 .

[59]  Subhendu Guha,et al.  Enhancement of open circuit voltage in high efficiency amorphous silicon alloy solar cells , 1986 .

[60]  A. Matsuda,et al.  High Rate Deposition of Microcrystalline Silicon Using Conventional Plasma-Enhanced Chemical Vapor Deposition , 1998 .

[61]  Y. Hishikawa,et al.  Principles for controlling the optical and electrical properties of hydrogenated amorphous silicon deposited from a silane plasma , 1993 .

[62]  T. Moustakas,et al.  Properties and photovoltaic applications of microcrystalline silicon films prepared by rf reactive sputtering , 1985 .

[63]  W. V. Sark,et al.  Deposition‐rate reduction through improper substrate‐to‐electrode attachment in very‐high‐frequency deposition of a‐Si:H , 1996 .

[64]  A. Poruba,et al.  Optical properties of microcrystalline materials , 1998 .

[65]  R. Rocheleau,et al.  Novel photochemical vapor deposition reactor for amorphous silicon solar cell deposition , 1987 .

[66]  W. Spear,et al.  Photogeneration and geminate recombination in amorphous silicon , 1983 .

[67]  Wang,et al.  Electron-drift-mobility measurements and exponential conduction-band tails in hydrogenated amorphous silicon-germanium alloys. , 1993, Physical review. B, Condensed matter.

[68]  Don L. Williamson,et al.  Hydrogen dilution profiling for hydrogenated microcrystalline silicon solar cells , 2004 .

[69]  K. Saito,et al.  High efficiency a-Si:H alloy cell deposited at high deposition rate , 1993 .

[70]  E. Yablonovitch Statistical ray optics , 1982 .

[71]  Edgar M. Williams,et al.  The Physics and Technology of Xerographic Processes , 1984 .

[72]  Y. Hayashi,et al.  Efficiency of the a-Si:H solar cell and grain size of SnO2transparent conductive film , 1983, IEEE Electron Device Letters.

[73]  Li,et al.  Comparison of the structural, electrical, and optical properties of amorphous silicon-germanium alloys produced from hydrides and fluorides. , 1988, Physical review. B, Condensed matter.

[74]  S. Guha,et al.  Hole-mobility limit of amorphous silicon solar cells , 2006 .

[75]  Vikramaditya Dave Electrical and Electronics Engineering , 2009 .

[76]  Dayu Zhou,et al.  Photonic crystal enhanced light-trapping in thin film solar cells , 2008 .

[77]  S. Guha,et al.  High deposition rate amorphous silicon‐based multijunction solar cell , 1995 .

[78]  Mark J. Kushner,et al.  A model for the discharge kinetics and plasma chemistry during plasma enhanced chemical vapor deposition of amorphous silicon , 1988 .

[79]  INFLUENCE OF EXCITATION FREQUENCY, TEMPERATURE, AND HYDROGEN DILUTION ON THE STABILITY OF PLASMA ENHANCED CHEMICAL VAPOR DEPOSITED A-SI:H , 1998 .

[80]  Yoshihiro Hishikawa,et al.  New Interpretation of the Effect of Hydrogen Dilution of Silane on Glow-Discharged Hydrogenated Amorphous Silicon for Stable Solar Cells , 1996 .

[81]  Chuang‐Chuang Tsai,et al.  Structural, optical, and spin properties of hydrogenated amorphous silicon-germanium alloys , 1989 .

[82]  Joshua M. Pearce,et al.  Evolution of microstructure and phase in amorphous, protocrystalline, and microcrystalline silicon studied by real time spectroscopic ellipsometry , 2003 .

[83]  Stephen J. Fonash,et al.  太阳电池器件物理 = Solar cell device physics , 1982 .

[84]  Yiping,et al.  Evidence for Light-Induced Increase of Si-H Bonds in Undoped a-Si:H. , 1995, Physical review letters.

[85]  Takeshi Watanabe,et al.  Chemical Vapor Deposition of a-Si:H Films Utilizing a Microwave Excited Ar Plasma Stream , 1986 .

[86]  E. Schiff Drift-mobility measurements and mobility edges in disordered silicons , 2004 .

[87]  R. Street,et al.  Hydrogenated amorphous semiconductors , 1993 .

[88]  T. Moriarty,et al.  Potential of amorphous and microcrystalline silicon solar cells , 2004 .

[89]  Myron Strongin,et al.  a‐Si : H produced by high‐temperature thermal decomposition of silane , 1979 .

[90]  Rustum Roy,et al.  Materials Research Society , 1984 .

[91]  Bernd Rech,et al.  Intrinsic microcrystalline silicon: A new material for photovoltaics , 2000 .

[92]  Pantelides,et al.  Quantitative analysis of EPR and electron-nuclear double resonance spectra of D centers in amorphous silicon: Dangling versus floating bonds. , 1988, Physical review. B, Condensed matter.

[93]  Jianping Xi,et al.  Current transport in amorphous silicon n/p junctions and their application as ‘‘tunnel’’ junctions in tandem solar cells , 1995 .

[94]  R. Schropp,et al.  Amorphous and ‘micromorph’ silicon tandem cells with high open-circuit voltage , 2005 .

[95]  S. Guha,et al.  Material structure and metastability of hydrogenated nanocrystalline silicon solar cells , 2006 .

[96]  Alan Gallagher,et al.  Neutral radical deposition from silane discharges , 1988 .

[97]  D. Carlson,et al.  AMORPHOUS SILICON SOLAR CELL , 1976 .

[98]  M. Abe,et al.  Large-scale, high-efficiency thin-film silicon solar cells fabricated by short-pulsed plasma CVD method , 2006 .

[99]  Isaac Balberg,et al.  Deposition of device quality, low H content amorphous silicon , 1991 .

[100]  W. Eccleston,et al.  Mater. Res. Soc. Symp. Proc. , 2006 .

[101]  Arvind Shah,et al.  Complete microcrystalline p-i-n solar cell—Crystalline or amorphous cell behavior? , 1994 .

[102]  S. Guha,et al.  Study of back reflectors for amorphous silicon alloy solar cell application , 1991 .

[103]  Stanford R. Ovshinsky,et al.  Band‐gap profiling for improving the efficiency of amorphous silicon alloy solar cells , 1989 .

[104]  R. Street,et al.  Hydrogenated amorphous silicon: Index , 1991 .

[105]  Arvind Shah,et al.  Evolution of the microstructure in microcrystalline silicon prepared by very high frequency glow-discharge using hydrogen dilution , 2000 .

[106]  M. Ferenets,et al.  Thin Solid Films , 2010 .

[107]  B. Rech,et al.  Texture etched ZnO:Al coated glass substrates for silicon based thin film solar cells , 1999 .

[108]  S. Esterby American Society for Testing and Materials , 2006 .

[109]  R. Schropp,et al.  Nanostructured thin films for multiband-gap silicon triple junction solar cells , 2008 .

[110]  S. Guha,et al.  High efficiency amorphous and nanocrystalline silicon solar cells , 2010 .

[111]  M. Wertheimer,et al.  Comparison of microwave and lower frequency plasmas for thin film deposition and etching , 1985 .

[112]  Thin film silicon solar cells grown near the edge of amorphous to microcrystalline transition , 2004 .

[113]  Amorphous silicon based solar cells , 2007 .

[114]  N. Wyrsch,et al.  High-rate deposition of amorphous hydrogenated silicon: effect of plasma excitation frequency , 1987 .

[115]  Masat Izu,et al.  Roll-to-roll manufacturing of amorphous silicon alloy solar cells with in situ cell performance diagnostics , 2003 .

[116]  Gallagher,et al.  Causes of SiH4 dissociation in silane dc discharges. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[117]  S. Guha,et al.  Structural, defect, and device behavior of hydrogenated amorphous Si near and above the onset of microcrystallinity , 1999 .

[118]  R. Robertson,et al.  Reaction mechanism and kinetics of silane pyrolysis on a hydrogenated amorphous silicon surface , 1986 .

[119]  Rana Biswas,et al.  Hydrogen Flip Model for Light-Induced Changes of Amorphous Silicon , 1999 .

[120]  A. Catalano,et al.  The Effect of Hydrogen Dilution on the Deposition of Sige Alloys and the Device Stability , 1991 .

[121]  P. Zanzucchi,et al.  Optical and photoconductive properties of discharge‐produced amorphous silicon , 1977 .

[122]  Kenji Yamamoto,et al.  A high efficiency thin film silicon solar cell and module , 2004 .

[123]  Pam van Schaik,et al.  Today , 2013 .

[124]  R. Crandall,et al.  Saturated defect densities of hydrogenated amorphous silicon grown by hot-wire chemical vapor deposition at rates up to 150 Å/s , 2001 .

[125]  M. Takwale,et al.  High mobility hydrogenated and oxygenated microcrystalline silicon as a photosensitive material in photovoltaic applications , 1992 .

[126]  A. Nebreda,et al.  p38δ and PKD1: Kinase Switches for Insulin Secretion , 2009, Cell.

[127]  S. Hegedus Current–Voltage Analysis of a-Si and a-SiGe Solar Cells Including Voltage-dependent Photocurrent Collection , 1997 .

[128]  Schiff,et al.  Transient photocharge measurements and electron emission from deep levels in undoped a-Si:H. , 1992, Physical review. B, Condensed matter.

[129]  W. Spear,et al.  Substitutional doping of amorphous silicon , 1993 .

[130]  A. Matsuda PLASMA AND SURFACE REACTIONS FOR OBTAINING LOW DEFECT DENSITY AMORPHOUS SILICON AT HIGH GROWTH RATES , 1998 .

[131]  S. Wakana,et al.  Microwave Plasma CVD System for the Fabrication of Thin Solid Films , 1982 .

[132]  Subhendu Guha,et al.  Experimental study of p layers in ‘‘tunnel’’ junctions for high efficiency amorphous silicon alloy multijunction solar cells and modules , 1994 .

[133]  S. M. Pietruszko,et al.  On light‐induced effect in amorphous hydrogenated silicon , 1981 .

[134]  J. Springer,et al.  New materials and deposition techniques for highly efficient silicon thin film solar cells , 2002 .

[135]  John Perlin,et al.  From Space to Earth: The Story of Solar Electricity , 1999 .

[136]  Yoshihiro Hishikawa,et al.  Interference-Free Determination of the Optical Absorption Coefficient and the Optical Gap of Amorphous Silicon Thin Films , 1991 .

[137]  M. Zeman,et al.  Performance analysis of a‐Si:H p–i–n solar cells with and without a buffer layer at the p/i interface , 2004 .

[138]  A. Catalano,et al.  Amorphous silicon p-i-n solar cells with graded interface , 1986 .

[139]  H. Branz HYDROGEN COLLISION MODEL : QUANTITATIVE DESCRIPTION OF METASTABILITY IN AMORPHOUS SILICON , 1999 .

[140]  M. Zeman,et al.  Optical modeling of a-Si:H solar cells deposited on textured glass/SnO2 substrates , 2002 .

[141]  T. Moustakas,et al.  Electron-hole recombination in reactively sputtered amorphous silicon solar cells , 1981 .

[142]  S. Jones,et al.  IMPROVEMENT OF MICROSTRUCTURE OF AMORPHOUS SILICON-GERMANIUM ALLOYS BY HYDROGEN DILUTION , 1995 .

[143]  R. Annan Photovoltaics. , 1985, Science.

[144]  D. Adler,et al.  Tetrahedrally-bonded amorphous semiconductors , 1985 .

[145]  Warren Jackson,et al.  DIRECT MEASUREMENT OF GAP STATE ABSORPTION IN HYDROGENATED AMORPHOUS SILICON BY PHOTOTHERMAL DEFLECTION SPECTROSCOPY , 1982 .

[146]  S. Ovshinsky,et al.  Fluorinated amorphous silicon-germanium alloys deposited from disilane-germane mixture , 1987 .

[147]  M. Konagai,et al.  High‐energy conversion efficiency amorphous silicon solar cells by photochemical vapor deposition , 1985 .

[148]  Schiff,et al.  Hydrogen and defects in amorphous silicon. , 1991, Physical review letters.

[149]  Hideki Matsumura,et al.  Catalytic Chemical Vapor Deposition (CTC–CVD) Method Producing High Quality Hydrogenated Amorphous Silicon , 1986 .

[150]  A. Matsuda,et al.  Effects of embedded crystallites in amorphous silicon on light-induced defect creation , 1999 .

[151]  T. Tiedje Time-resolved charge transport in hydrogenated amorphous silicon , 1984 .

[152]  V. Dalal,et al.  Stability of Single and Tandem Junction A-Si:H Solar Cells Grown using the ECR Process , 1997 .

[153]  S. M. Sze,et al.  Physics of semiconductor devices , 1969 .

[154]  Diffusion-controlled bimolecular recombination of electrons and holes in a-Si:H , 1995 .

[155]  E. Schiff Low-mobility solar cells: a device physics primer with application to amorphous silicon , 2003 .

[156]  Hellmut Fritzsche,et al.  Amorphous silicon and related materials , 1989 .

[157]  W. Spear,et al.  Investigation of the localised state distribution in amorphous Si films , 1972 .

[158]  W. Luft,et al.  Hydrogenated Amorphous Silicon Alloy Deposition Processes , 1993 .

[159]  C. Dickson,et al.  Purity considerations for amorphous silicon thin films , 1988 .

[160]  S. Oda,et al.  Diagnostic Study of VHF Plasma and Deposition of Hydrogenated Amorphous Silicon Films , 1990 .

[161]  R. Chittick,et al.  Glow Discharge Deposition of Amorphous Semiconductors: The Early Years , 1985 .

[162]  S. Hamma,et al.  Low-temperature growth of thick intrinsic and ultrathin phosphorous or boron-doped microcrystalline silicon films: Optimum crystalline fractions for solar cell applications , 2001 .

[163]  Melcher,et al.  Optical-bias effects in electron-drift measurements and defect relaxation in a-Si:H. , 1993, Physical review. B, Condensed matter.

[164]  Tsai,et al.  Energy dependence of the optical matrix element in hydrogenated amorphous and crystalline silicon. , 1985, Physical review. B, Condensed matter.

[165]  Stephen J. Fonash,et al.  Applications of AMPS-1D for solar cell simulation , 2008 .

[166]  M. Gell-Mann,et al.  Physics Today. , 1966, Applied optics.

[167]  L. Feitknecht,et al.  Influence of Substrate on the Microstructure of Microcrystalline Silicon Layers and Cells , 2002 .

[168]  M. Zeman,et al.  Determination of the mobility gap of intrinsic μc-Si:H in p-i-n solar cells , 2009 .

[169]  L. Ley Electronic structure of a-Si:H and its interfaces as determined by photoelectron spectroscopy , 1989 .

[170]  H. Takatsuka,et al.  Development of high efficiency large area silicon thin film modules using VHF-PECVD , 2004 .

[171]  G. Lucovsky,et al.  Properties of intrinsic and doped a-Si:H deposited by remote plasma enhanced chemical vapor deposition , 1988 .

[172]  H. Okamoto,et al.  Properties and structure of a‐SiC:H for high‐efficiency a‐Si solar cell , 1982 .

[173]  Robert L. Mueller Spectral response measurements of two-terminal triple-junction a-Si solar cells , 1993 .

[174]  Kenji Yamamoto,et al.  Effect of spectral irradiance distribution on the outdoor performance of amorphous Si//thin-film crystalline Si stacked photovoltaic modules , 2007 .

[175]  A. Maldonado,et al.  Physical properties of ZnO:F obtained from a fresh and aged solution of zinc acetate and zinc acetylacetonate , 2006 .

[176]  C. Wronski,et al.  Internal photoemission on a-Si:H Schottky barrier structures revisited , 1995 .