Mechanisms of substrate processing during ER-associated protein degradation

[1]  T. Liang,et al.  SEL1L–HRD1 endoplasmic reticulum-associated degradation controls STING-mediated innate immunity by limiting the size of the activable STING pool , 2023, Nature Cell Biology.

[2]  Shourya S. Roy Burman,et al.  The human E3 ligase RNF185 is a regulator of the SARS-CoV-2 envelope protein , 2023, iScience.

[3]  T. Kawano,et al.  ER proteostasis regulators cell-non-autonomously control sleep. , 2023, Cell reports.

[4]  Zhilei Zhao,et al.  The E3 ligase RNF5 restricts SARS-CoV-2 replication by targeting its envelope protein for degradation , 2023, Signal Transduction and Targeted Therapy.

[5]  Andreas Martin,et al.  The Ufd1 cofactor determines the linkage specificity of polyubiquitin chain engagement by the AAA+ ATPase Cdc48. , 2023, Molecular cell.

[6]  Nupur K. Das,et al.  Hepatic SEL1L-HRD1 ER-associated degradation regulates systemic iron homeostasis via ceruloplasmin , 2023, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Ryan D Baldridge,et al.  The ERAD system is restricted by elevated ceramides , 2023, Science advances.

[8]  Matthias J. Feige,et al.  The human signal peptidase complex acts as a quality control enzyme for membrane proteins , 2022, Science.

[9]  Christopher J. F. Cameron,et al.  Dynamic quality control machinery that operates across compartmental borders mediates the degradation of mammalian nuclear membrane proteins , 2022, Cell reports.

[10]  M. Hochstrasser,et al.  Elements of the ERAD ubiquitin ligase Doa10 regulating sequential poly-ubiquitylation of its targets , 2022, iScience.

[11]  D. Huster,et al.  Rhomboid-catalyzed intramembrane proteolysis requires hydrophobic matching with the surrounding lipid bilayer , 2022, Science advances.

[12]  A. Kaser,et al.  Regulation of membrane fluidity by RNF145‐triggered degradation of the lipid hydrolase ADIPOR2 , 2022, The EMBO journal.

[13]  Pedro Carvalho,et al.  Endoplasmic Reticulum-Associated Protein Degradation. , 2022, Cold Spring Harbor perspectives in biology.

[14]  N. Mizushima,et al.  ER-Phagy: Quality and Quantity Control of the Endoplasmic Reticulum by Autophagy. , 2022, Cold Spring Harbor perspectives in biology.

[15]  T. Rapoport,et al.  Disulfide-crosslink analysis of the ubiquitin ligase Hrd1 complex during endoplasmic reticulum-associated protein degradation , 2022, The Journal of biological chemistry.

[16]  Yoontae Lee,et al.  The MARCHF6 E3 ubiquitin ligase acts as an NADPH sensor for the regulation of ferroptosis , 2022, Nature Cell Biology.

[17]  Yaoyang Zhang,et al.  TMUB1 is an endoplasmic reticulum-resident escortase that promotes the p97-mediated extraction of membrane proteins for degradation. , 2022, Molecular cell.

[18]  Y. Ye,et al.  Rhomboid protease RHBDL4 promotes retrotranslocation of aggregation-prone proteins for degradation , 2022, Cell reports.

[19]  Darius J. Devlin,et al.  The testis-specific E3 ubiquitin ligase RNF133 is required for fecundity in mice , 2022, BMC biology.

[20]  R. Wojcikiewicz,et al.  Binding of the erlin1/2 complex to the third intralumenal loop of IP3R1 triggers its ubiquitin-proteasomal degradation , 2022, The Journal of biological chemistry.

[21]  Taoyong Chen,et al.  The transmembrane endoplasmic reticulum–associated E3 ubiquitin ligase TRIM13 restrains the pathogenic-DNA–triggered inflammatory response , 2022, Science advances.

[22]  Michelle E. Clapp,et al.  A structurally conserved site in AUP1 binds the E2 enzyme UBE2G2 and is essential for ER-associated degradation , 2021, PLoS biology.

[23]  S. Weinberg,et al.  HRD1-mediated METTL14 degradation regulates m6A mRNA modification to suppress ER proteotoxic liver disease. , 2021, Molecular cell.

[24]  Rommie E. Amaro,et al.  Derlin rhomboid pseudoproteases employ substrate engagement and lipid distortion to enable the retrotranslocation of ERAD membrane substrates , 2021, Cell reports.

[25]  V. Goder,et al.  Pep4-dependent microautophagy is required for post-ER degradation of GPI-anchored proteins , 2021, Autophagy.

[26]  J. Brodsky,et al.  The Targeting of Native Proteins to the Endoplasmic Reticulum-Associated Degradation (ERAD) Pathway: An Expanding Repertoire of Regulated Substrates , 2021, Biomolecules.

[27]  M. Boutros,et al.  EVI/WLS function is regulated by ubiquitylation and is linked to ER-associated degradation by ERLIN2 , 2021, Journal of cell science.

[28]  Q. Xie,et al.  Endoplasmic reticulum-related E3 ubiquitin ligases: Key regulators of plant growth and stress responses , 2021, Plant communications.

[29]  Ying Xia,et al.  The cryo-EM structure of an ERAD protein channel formed by tetrameric human Derlin-1 , 2021, Science Advances.

[30]  J. Neefjes,et al.  The ER-embedded UBE2J1/RNF26 ubiquitylation complex exerts spatiotemporal control over the endolysosomal pathway. , 2021, Cell reports.

[31]  J. Felix,et al.  AAA+ ATPases: structural insertions under the magnifying glass , 2020, Current opinion in structural biology.

[32]  R. Klevit,et al.  Who with whom: functional coordination of E2 enzymes by RING E3 ligases during poly‐ubiquitylation , 2020, The EMBO journal.

[33]  G. Lederkremer,et al.  Oxidoreductases in Glycoprotein Glycosylation, Folding, and ERAD , 2020, Cells.

[34]  T. Miyata,et al.  Derlin-3 Is Required for Changes in ERAD Complex Formation under ER Stress , 2020, International journal of molecular sciences.

[35]  R. Hampton,et al.  HRD Complex Self-Remodeling Enables a Novel Route of Membrane Protein Retrotranslocation , 2020, iScience.

[36]  Pedro Carvalho,et al.  Quality Control of ER Membrane Proteins by the RNF185/Membralin Ubiquitin Ligase Complex , 2020, Molecular cell.

[37]  Yaoyang Zhang,et al.  RNF126-Mediated Reubiquitination Is Required for Proteasomal Degradation of p97-Extracted Membrane Proteins. , 2020, Molecular cell.

[38]  C. Hetz,et al.  Mechanisms, regulation and functions of the unfolded protein response , 2020, Nature Reviews Molecular Cell Biology.

[39]  G. Hummer,et al.  Structural basis of ER-associated protein degradation mediated by the Hrd1 ubiquitin ligase complex , 2020, Science.

[40]  D. Riedel,et al.  Hrd1 forms the retrotranslocation pore regulated by auto-ubiquitination and binding of misfolded proteins , 2020, Nature Cell Biology.

[41]  Pedro Carvalho,et al.  Quality Control of Protein Complex Assembly by a Transmembrane Recognition Factor , 2020, Molecular cell.

[42]  W. Baumeister,et al.  Direct visualization of degradation microcompartments at the ER membrane , 2019, Proceedings of the National Academy of Sciences.

[43]  Ling Qi,et al.  ER-associated degradation in health and disease – from substrate to organism , 2019, Journal of Cell Science.

[44]  Y. Saeki,et al.  Structural insights into ubiquitin recognition and Ufd1 interaction of Npl4 , 2019, Nature Communications.

[45]  G. Lander,et al.  The molecular principles governing the activity and functional diversity of AAA+ proteins , 2019, Nature Reviews Molecular Cell Biology.

[46]  Billy Tsai,et al.  SV40 Hijacks Cellular Transport, Membrane Penetration, and Disassembly Machineries to Promote Infection , 2019, Viruses.

[47]  G. Lederkremer,et al.  Compartmentalization and Selective Tagging for Disposal of Misfolded Glycoproteins. , 2019, Trends in biochemical sciences.

[48]  M. K. Lemberg,et al.  Intramembrane proteolysis at a glance: from signalling to protein degradation , 2019, Journal of Cell Science.

[49]  H. Rothan,et al.  A small molecule inhibitor of ER-to-cytosol protein dislocation exhibits anti-dengue and anti-Zika virus activity , 2019, Scientific Reports.

[50]  Guisheng Zhong,et al.  ER-localized Hrd1 ubiquitinates and inactivates Usp15 to promote TLR4-induced inflammation during bacterial infection , 2019, Nature Microbiology.

[51]  J. Cohen,et al.  Human cytomegalovirus evades antibody-mediated immunity through endoplasmic reticulum-associated degradation of the FcRn receptor , 2019, Nature Communications.

[52]  E. Strieter,et al.  Enzymatic Logic of Ubiquitin Chain Assembly , 2019, Front. Physiol..

[53]  J. C. Price,et al.  Structure of the Cdc48 segregase in the act of unfolding an authentic substrate , 2019, Science.

[54]  E. C. Twomey,et al.  Substrate processing by the Cdc48 ATPase complex is initiated by ubiquitin unfolding , 2019, Science.

[55]  B. Beutler,et al.  LMBR1L regulates lymphopoiesis through Wnt/β-catenin signaling , 2019, Science.

[56]  D. Langosch,et al.  The Metastable XBP1u Transmembrane Domain Defines Determinants for Intramembrane Proteolysis by Signal Peptide Peptidase. , 2019, Cell reports.

[57]  S. Urban,et al.  Rhomboid distorts lipids to break the viscosity-imposed speed limit of membrane diffusion , 2019, Science.

[58]  Joshua E. Elias,et al.  Genome-wide CRISPR Analysis Identifies Substrate-Specific Conjugation Modules in ER-Associated Degradation. , 2019, Molecular cell.

[59]  G. Lederkremer,et al.  Mannosidase activity of EDEM1 and EDEM2 depends on an unfolded state of their glycoprotein substrates , 2018, Communications Biology.

[60]  M. Molinari,et al.  ER‐to‐lysosome‐associated degradation of proteasome‐resistant ATZ polymers occurs via receptor‐mediated vesicular transport , 2018, The EMBO journal.

[61]  Andreas Martin,et al.  Structure and Function of the 26S Proteasome. , 2018, Annual review of biochemistry.

[62]  T. Rapoport,et al.  Structure of the Cdc48 ATPase with its ubiquitin-binding cofactor Ufd1-Npl4 , 2018, Nature Structural & Molecular Biology.

[63]  T. Shaler,et al.  Redundant and Antagonistic Roles of XTP3B and OS9 in Decoding Glycan and Non-glycan Degrons in ER-Associated Degradation. , 2018, Molecular cell.

[64]  P. Lehner,et al.  MARCH6 and TRC8 facilitate the quality control of cytosolic and tail‐anchored proteins , 2018, EMBO reports.

[65]  Junjie Hu,et al.  Transmembrane E3 ligase RNF183 mediates ER stress-induced apoptosis by degrading Bcl-xL , 2018, Proceedings of the National Academy of Sciences.

[66]  M. Boutros,et al.  ERAD‐dependent control of the Wnt secretory factor Evi , 2018, The EMBO journal.

[67]  Y. Saeki,et al.  K63 ubiquitylation triggers proteasomal degradation by seeding branched ubiquitin chains , 2018, Proceedings of the National Academy of Sciences.

[68]  T. Ideker,et al.  The Dfm1 Derlin Is Required for ERAD Retrotranslocation of Integral Membrane Proteins. , 2018, Molecular cell.

[69]  H. Meyer,et al.  VCP/p97-Mediated Unfolding as a Principle in Protein Homeostasis and Signaling. , 2017, Molecular cell.

[70]  Dongsheng Li,et al.  Cryo-EM structure of the protein-conducting ERAD channel Hrd1 in complex with Hrd3 , 2017, Nature.

[71]  P. Arvan,et al.  New Insights into the Physiological Role of Endoplasmic Reticulum-Associated Degradation. , 2017, Trends in cell biology.

[72]  Y. Saeki,et al.  In Vivo Ubiquitin Linkage-type Analysis Reveals that the Cdc48-Rad23/Dsk2 Axis Contributes to K48-Linked Chain Specificity of the Proteasome. , 2017, Molecules and Cells.

[73]  T. Rapoport,et al.  Molecular Mechanism of Substrate Processing by the Cdc48 ATPase Complex , 2017, Cell.

[74]  M. Aldea,et al.  Compartmentalization of ER-Bound Chaperone Confines Protein Deposit Formation to the Aging Yeast Cell , 2017, Current Biology.

[75]  E. Yeo,et al.  The role of ubiquitin-conjugating enzyme Ube2j1 phosphorylation and its degradation by proteasome during endoplasmic stress recovery , 2017, Journal of Cell Communication and Signaling.

[76]  N. Zelcer,et al.  Identification of the ER-resident E3 ubiquitin ligase RNF145 as a novel LXR-regulated gene , 2017, PloS one.

[77]  Wei Li,et al.  Ufd2p synthesizes branched ubiquitin chains to promote the degradation of substrates modified with atypical chains , 2017, Nature Communications.

[78]  Thomas M. Norman,et al.  A Multiplexed Single-Cell CRISPR Screening Platform Enables Systematic Dissection of the Unfolded Protein Response , 2016, Cell.

[79]  M. Hagiwara,et al.  Posttranscriptional Regulation of Glycoprotein Quality Control in the Endoplasmic Reticulum Is Controlled by the E2 Ub-Conjugating Enzyme UBC6e. , 2016, Molecular cell.

[80]  G. Dittmar,et al.  Sequential Poly-ubiquitylation by Specialized Conjugating Enzymes Expands the Versatility of a Quality Control Ubiquitin Ligase. , 2016, Molecular cell.

[81]  Billy Tsai,et al.  How Polyomaviruses Exploit the ERAD Machinery to Cause Infection , 2016, Viruses.

[82]  Y. Okuma,et al.  Genome-wide identification and gene expression profiling of ubiquitin ligases for endoplasmic reticulum protein degradation , 2016, Scientific Reports.

[83]  J. Olzmann,et al.  Endoplasmic Reticulum-Associated Degradation and Lipid Homeostasis. , 2016, Annual review of nutrition.

[84]  T. Rapoport,et al.  Autoubiquitination of the Hrd1 Ligase Triggers Protein Retrotranslocation in ERAD , 2016, Cell.

[85]  David Balchin,et al.  In vivo aspects of protein folding and quality control , 2016, Science.

[86]  J. Neefjes,et al.  An ER-Associated Pathway Defines Endosomal Architecture for Controlled Cargo Transport , 2016, Cell.

[87]  H. Riezman,et al.  Limited ER quality control for GPI-anchored proteins , 2016, The Journal of cell biology.

[88]  P. Güntert,et al.  The CUE Domain of Cue1 Aligns Growing Ubiquitin Chains with Ubc7 for Rapid Elongation. , 2016, Molecular cell.

[89]  G. Dougan,et al.  Genetic dissection of mammalian ERAD through comparative haploid and CRISPR forward genetic screens , 2016, Nature Communications.

[90]  J. Weissman,et al.  Htm1p–Pdi1p is a folding-sensitive mannosidase that marks N-glycoproteins for ER-associated protein degradation , 2016, Proceedings of the National Academy of Sciences.

[91]  P. Brzovic,et al.  E2 enzymes: more than just middle men , 2016, Cell Research.

[92]  S. Kersten,et al.  IRE1α is an endogenous substrate of endoplasmic reticulum-associated degradation , 2015, Nature Cell Biology.

[93]  M. K. Lemberg,et al.  Clipping or Extracting: Two Ways to Membrane Protein Degradation. , 2015, Trends in cell biology.

[94]  K. Nagata,et al.  Pathogenic Hijacking of ER-Associated Degradation: Is ERAD Flexible? , 2015, Molecular cell.

[95]  Ling Qi,et al.  A CRISPR-Based Screen Identifies Genes Essential for West-Nile-Virus-Induced Cell Death. , 2015, Cell reports.

[96]  S. Kreft,et al.  The yeast ERAD-C ubiquitin ligase Doa10 recognizes an intramembrane degron , 2015, The Journal of cell biology.

[97]  S. Aratani,et al.  The E3 ligase synoviolin controls body weight and mitochondrial biogenesis through negative regulation of PGC‐1β , 2015, The EMBO journal.

[98]  G. von Heijne,et al.  Tissue-based map of the human proteome , 2015, Science.

[99]  W. Huber,et al.  Protein quality control at the inner nuclear membrane , 2014, Nature.

[100]  M. Schuldiner,et al.  The yeast ER-intramembrane protease Ypf1 refines nutrient sensing by regulating transporter abundance. , 2014, Molecular cell.

[101]  Pedro Carvalho,et al.  Quality control of inner nuclear membrane proteins by the Asi complex , 2014, Science.

[102]  D. Langosch,et al.  Signal peptide peptidase functions in ERAD to cleave the unfolded protein response regulator XBP1u , 2014, The EMBO journal.

[103]  Koichi Kato,et al.  EDEM2 initiates mammalian glycoprotein ERAD by catalyzing the first mannose trimming step , 2014, The Journal of cell biology.

[104]  G. Dougan,et al.  TMEM129 is a Derlin-1 associated ERAD E3 ligase essential for virus-induced degradation of MHC-I , 2014, Proceedings of the National Academy of Sciences.

[105]  S. Bloor,et al.  Cleavage by signal peptide peptidase is required for the degradation of selected tail-anchored proteins , 2014, The Journal of cell biology.

[106]  Michael T. McManus,et al.  A high-coverage shRNA screen identifies TMEM129 as an E3 ligase involved in ER-associated protein degradation , 2014, Nature Communications.

[107]  Christopher E. Berndsen,et al.  New insights into ubiquitin E3 ligase mechanism , 2014, Nature Structural &Molecular Biology.

[108]  N. Ben-Tal,et al.  Herp coordinates compartmentalization and recruitment of HRD1 and misfolded proteins for ERAD , 2014, Molecular biology of the cell.

[109]  Sumana Sanyal,et al.  The Chaperone BAG6 Captures Dislocated Glycoproteins in the Cytosol , 2014, PloS one.

[110]  J. Yates,et al.  Sel1L is indispensable for mammalian endoplasmic reticulum-associated degradation, endoplasmic reticulum homeostasis, and survival , 2014, Proceedings of the National Academy of Sciences.

[111]  Thomas Sommer,et al.  Der1 promotes movement of misfolded proteins through the endoplasmic reticulum membrane , 2013, Nature Cell Biology.

[112]  J. Hoseki,et al.  Glycosylation-independent ERAD pathway serves as a backup system under ER stress , 2013, Molecular biology of the cell.

[113]  Billy Tsai,et al.  Establishment of an In Vitro Transport Assay That Reveals Mechanistic Differences in Cytosolic Events Controlling Cholera Toxin and T-Cell Receptor α Retro-Translocation , 2013, PloS one.

[114]  X. Ji,et al.  Allosteric regulation of E2:E3 interactions promote a processive ubiquitination machine , 2013, The EMBO journal.

[115]  P. Lehner,et al.  MHC class I molecules are preferentially ubiquitinated on endoplasmic reticulum luminal residues during HRD1 ubiquitin E3 ligase-mediated dislocation , 2013, Proceedings of the National Academy of Sciences.

[116]  M. Brandeis,et al.  Ubiquitin conjugation triggers misfolded protein sequestration into quality control foci when Hsp70 chaperone levels are limiting , 2013, Molecular biology of the cell.

[117]  X. Ji,et al.  A structurally unique E2-binding domain activates ubiquitination by the ERAD E2, Ubc7p, through multiple mechanisms. , 2013, Molecular cell.

[118]  D. Hebert,et al.  Protein folding in the endoplasmic reticulum. , 2013, Cold Spring Harbor perspectives in biology.

[119]  Lisa M. Ryno,et al.  Stress-independent activation of XBP1s and/or ATF6 reveals three functionally diverse ER proteostasis environments. , 2013, Cell reports.

[120]  Y. Ye,et al.  Bag6/Bat3/Scythe: A novel chaperone activity with diverse regulatory functions in protein biogenesis and degradation , 2013, BioEssays : news and reviews in molecular, cellular and developmental biology.

[121]  Billy Tsai,et al.  The ERdj5-Sel1L complex facilitates cholera toxin retrotranslocation , 2013, Molecular biology of the cell.

[122]  J. Olzmann,et al.  Unassembled CD147 is an endogenous endoplasmic reticulum–associated degradation substrate , 2012, Molecular biology of the cell.

[123]  Lan Huang,et al.  SGTA recognizes a noncanonical ubiquitin-like domain in the Bag6-Ubl4A-Trc35 complex to promote endoplasmic reticulum-associated degradation. , 2012, Cell reports.

[124]  W. Chazin,et al.  Structure of an E3:E2~Ub complex reveals an allosteric mechanism shared among RING/U-box ligases. , 2012, Molecular cell.

[125]  M. K. Lemberg,et al.  Ubiquitin-dependent intramembrane rhomboid protease promotes ERAD of membrane proteins. , 2012, Molecular cell.

[126]  M. Molinari,et al.  Flagging and docking: dual roles for N-glycans in protein quality control and cellular proteostasis , 2012, Trends in Biochemical Sciences.

[127]  M. Rapé,et al.  The Ubiquitin Code , 2012, Annual review of biochemistry.

[128]  M. Bug,et al.  Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system , 2012, Nature Cell Biology.

[129]  J. Wade Harper,et al.  Defining human ERAD networks through an integrative mapping strategy , 2011, Nature Cell Biology.

[130]  P. Walter,et al.  The Unfolded Protein Response: From Stress Pathway to Homeostatic Regulation , 2011, Science.

[131]  H. Ploegh,et al.  Protein quality control in the ER: balancing the ubiquitin checkbook. , 2011, Trends in cell biology.

[132]  J. Olzmann,et al.  Derlin-1 is a rhomboid pseudoprotease required for the dislocation of mutant α-1 antitrypsin from the endoplasmic reticulum , 2011, Nature Structural &Molecular Biology.

[133]  Billy Tsai,et al.  How viruses and toxins disassemble to enter host cells. , 2011, Annual review of microbiology.

[134]  Qiuyan Wang,et al.  A ubiquitin ligase-associated chaperone holdase maintains polypeptides in soluble states for proteasome degradation. , 2011, Molecular cell.

[135]  I. Braakman,et al.  Protein folding and modification in the mammalian endoplasmic reticulum. , 2011, Annual review of biochemistry.

[136]  J. Hoseki,et al.  Structural basis of an ERAD pathway mediated by the ER-resident protein disulfide reductase ERdj5. , 2011, Molecular cell.

[137]  P. Lehner,et al.  HRD1 and UBE2J1 target misfolded MHC class I heavy chains for endoplasmic reticulum-associated degradation , 2011, Proceedings of the National Academy of Sciences.

[138]  L. Hendershot,et al.  Ubiquitylation of an ERAD substrate occurs on multiple types of amino acids. , 2010, Molecular cell.

[139]  Yoshiki Yamaguchi,et al.  Structural basis for oligosaccharide recognition of misfolded glycoproteins by OS-9 in ER-associated degradation. , 2010, Molecular cell.

[140]  Tom A. Rapoport,et al.  Retrotranslocation of a Misfolded Luminal ER Protein by the Ubiquitin-Ligase Hrd1p , 2010, Cell.

[141]  D. Wolf,et al.  Dfm1 Forms Distinct Complexes with Cdc48 and the ER Ubiquitin Ligases and Is Required for ERAD , 2010, Traffic.

[142]  Javier G. Magadán,et al.  Multilayered Mechanism of CD4 Downregulation by HIV-1 Vpu Involving Distinct ER Retention and ERAD Targeting Steps , 2010, PLoS pathogens.

[143]  Thomas Sommer,et al.  Usa1 functions as a scaffold of the HRD-ubiquitin ligase. , 2009, Molecular cell.

[144]  E. Wiertz,et al.  Ube2j2 ubiquitinates hydroxylated amino acids on ER-associated degradation substrates , 2009, The Journal of cell biology.

[145]  H. Ploegh,et al.  The otubain YOD1 is a deubiquitinating enzyme that associates with p97 to facilitate protein dislocation from the ER. , 2009, Molecular cell.

[146]  Mair E. M. Thomas,et al.  The TRC8 E3 ligase ubiquitinates MHC class I molecules before dislocation from the ER , 2009, The Journal of cell biology.

[147]  R. Deshaies,et al.  RING domain E3 ubiquitin ligases. , 2009, Annual review of biochemistry.

[148]  A. Weissman,et al.  A Ubc7p-binding domain in Cue1p activates ER-associated protein degradation , 2009, Journal of Cell Science.

[149]  Daniel Schulz,et al.  Misfolded membrane proteins are specifically recognized by the transmembrane domain of the Hrd1p ubiquitin ligase. , 2009, Molecular cell.

[150]  T. Sommer,et al.  The ubiquitylation machinery of the endoplasmic reticulum , 2009, Nature.

[151]  G. Morreale,et al.  Evolutionary divergence of valosin‐containing protein/cell division cycle protein 48 binding interactions among endoplasmic reticulum‐associated degradation proteins , 2009, The FEBS journal.

[152]  Thomas Sommer,et al.  Htm1 protein generates the N-glycan signal for glycoprotein degradation in the endoplasmic reticulum , 2009, The Journal of cell biology.

[153]  J. Weissman,et al.  Defining the glycan destruction signal for endoplasmic reticulum-associated degradation. , 2008, Molecular cell.

[154]  H. Ploegh,et al.  SEL1L nucleates a protein complex required for dislocation of misfolded glycoproteins , 2008, Proceedings of the National Academy of Sciences.

[155]  J. Hoseki,et al.  ERdj5 Is Required as a Disulfide Reductase for Degradation of Misfolded Proteins in the ER , 2008, Science.

[156]  T. Rapoport,et al.  The ER‐associated degradation component Der1p and its homolog Dfm1p are contained in complexes with distinct cofactors of the ATPase Cdc48p , 2008, FEBS letters.

[157]  W. Weis,et al.  Improved structures of full-length p97, an AAA ATPase: implications for mechanisms of nucleotide-dependent conformational change. , 2008, Structure.

[158]  T. Shaler,et al.  OS-9 and GRP94 deliver mutant α1-antitrypsin to the Hrd1–SEL1L ubiquitin ligase complex for ERAD , 2008, Nature Cell Biology.

[159]  W. Lencer,et al.  Derlin-1 facilitates the retro-translocation of cholera toxin. , 2007, Molecular biology of the cell.

[160]  Peter J Espenshade,et al.  Regulation of sterol synthesis in eukaryotes. , 2007, Annual review of genetics.

[161]  Mario Schelhaas,et al.  Simian Virus 40 Depends on ER Protein Folding and Quality Control Factors for Entry into Host Cells , 2007, Cell.

[162]  S. Yamasaki,et al.  Cytoplasmic destruction of p53 by the endoplasmic reticulum‐resident ubiquitin ligase ‘Synoviolin’ , 2007, The EMBO journal.

[163]  H. Ploegh,et al.  SEL1L, the homologue of yeast Hrd3p, is involved in protein dislocation from the mammalian ER , 2006, The Journal of cell biology.

[164]  C. Fan,et al.  Sequential Quality-Control Checkpoints Triage Misfolded Cystic Fibrosis Transmembrane Conductance Regulator , 2006, Cell.

[165]  Thomas Sommer,et al.  A complex of Yos9p and the HRD ligase integrates endoplasmic reticulum quality control into the degradation machinery , 2006, Nature Cell Biology.

[166]  Jonathan S. Weissman,et al.  A Luminal Surveillance Complex that Selects Misfolded Glycoproteins for ER-Associated Degradation , 2006, Cell.

[167]  Tom A. Rapoport,et al.  Distinct Ubiquitin-Ligase Complexes Define Convergent Pathways for the Degradation of ER Proteins , 2006, Cell.

[168]  H. Ploegh,et al.  Signal peptide peptidase is required for dislocation from the endoplasmic reticulum , 2006, Nature.

[169]  J. Kornbluth,et al.  NK Lytic-Associated Molecule, Involved in NK Cytotoxic Function, Is an E3 Ligase1 , 2006, The Journal of Immunology.

[170]  J. Berger,et al.  Evolutionary relationships and structural mechanisms of AAA+ proteins. , 2006, Annual review of biophysics and biomolecular structure.

[171]  T. Sommer,et al.  The Hrd1p ligase complex forms a linchpin between ER‐lumenal substrate selection and Cdc48p recruitment , 2006, The EMBO journal.

[172]  M. Hochstrasser,et al.  Membrane and soluble substrates of the Doa10 ubiquitin ligase are degraded by distinct pathways , 2006, The EMBO journal.

[173]  S. Jentsch,et al.  Functional division of substrate processing cofactors of the ubiquitin-selective Cdc48 chaperone. , 2006, Molecular cell.

[174]  Joseph L. Goldstein,et al.  Protein Sensors for Membrane Sterols , 2006, Cell.

[175]  P. Kloetzel,et al.  The ubiquitin-domain protein HERP forms a complex with components of the endoplasmic reticulum associated degradation pathway. , 2005, Journal of molecular biology.

[176]  H. Ploegh,et al.  Multiprotein complexes that link dislocation, ubiquitination, and extraction of misfolded proteins from the endoplasmic reticulum membrane. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[177]  A. Buchberger,et al.  Membrane-bound Ubx2 recruits Cdc48 to ubiquitin ligases and their substrates to ensure efficient ER-associated protein degradation , 2005, Nature Cell Biology.

[178]  T. Sommer,et al.  Ubx2 links the Cdc48 complex to ER-associated protein degradation , 2005, Nature Cell Biology.

[179]  B. Song,et al.  Gp78, a membrane-anchored ubiquitin ligase, associates with Insig-1 and couples sterol-regulated ubiquitination to degradation of HMG CoA reductase. , 2005, Molecular cell.

[180]  Woong Kim,et al.  Yos9p detects and targets misfolded glycoproteins for ER-associated degradation. , 2005, Molecular cell.

[181]  M. Nita-Lazar,et al.  Yos9 protein is essential for degradation of misfolded glycoproteins and may function as lectin in ERAD. , 2005, Molecular cell.

[182]  J. Weissman,et al.  Exploration of the topological requirements of ERAD identifies Yos9p as a lectin sensor of misfolded glycoproteins in the ER lumen. , 2005, Molecular cell.

[183]  D. Wolf,et al.  A genomic screen identifies Dsk2p and Rad23p as essential components of ER‐associated degradation , 2004, EMBO reports.

[184]  C. Rodighiero,et al.  Role of ubiquitination in retro‐translocation of cholera toxin and escape of cytosolic degradation , 2002, EMBO reports.

[185]  M. Ferrone,et al.  The tumor autocrine motility factor receptor, gp78, is a ubiquitin protein ligase implicated in degradation from the endoplasmic reticulum , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[186]  M. Hochstrasser,et al.  A conserved ubiquitin ligase of the nuclear envelope/endoplasmic reticulum that functions in both ER-associated and Matalpha2 repressor degradation. , 2001, Genes & development.

[187]  Jörg Urban,et al.  A regulatory link between ER-associated protein degradation and the unfolded-protein response. , 2000, Nature Cell Biology.

[188]  Hiderou Yoshida,et al.  Identification of the cis-Acting Endoplasmic Reticulum Stress Response Element Responsible for Transcriptional Induction of Mammalian Glucose-regulated Proteins , 1998, The Journal of Biological Chemistry.

[189]  H. Ploegh Viral strategies of immune evasion. , 1998, Science.

[190]  T. Rapoport,et al.  Sec6l-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction , 1996, Nature.

[191]  J. Rine,et al.  Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. , 1996, Molecular biology of the cell.

[192]  J. Brodsky,et al.  Proteasome-dependent endoplasmic reticulum-associated protein degradation: An unconventional route to a familiar fate , 1996 .

[193]  D. Wolf,et al.  ER Degradation of a Misfolded Luminal Protein by the Cytosolic Ubiquitin-Proteasome Pathway , 1996, Science.

[194]  Satoshi Omura,et al.  Degradation of CFTR by the ubiquitin-proteasome pathway , 1995, Cell.

[195]  J. Lippincott-Schwartz,et al.  Pre-Golgi degradation of newly synthesized T-cell antigen receptor chains: intrinsic sensitivity and the role of subunit assembly , 1989, The Journal of cell biology.

[196]  J. Bonifacino,et al.  Selective degradation of T cell antigen receptor chains retained in a pre-Golgi compartment , 1988, The Journal of cell biology.

[197]  B. Delabarre,et al.  Complete structure of p97/valosin-containing protein reveals communication between nucleotide domains , 2003, Nature Structural Biology.

[198]  C. Joazeiro,et al.  Hrd1p/Der3p is a membrane-anchored ubiquitin ligase required for ER-associated degradation , 2000, Nature Cell Biology.

[199]  R. Plemper,et al.  Der3p/Hrd1p is required for endoplasmic reticulum-associated degradation of misfolded lumenal and integral membrane proteins. , 1998, Molecular biology of the cell.