A Molecular-Scale Approach to Rare-Earth Beneficiation: Thinking Small to Avoid Large Losses

[1]  G. He,et al.  A novel decanedioic hydroxamic acid collector for the flotation separation of bastnäsite from calcite , 2020 .

[2]  Weiqing Wang,et al.  Bastnaesite, Barite, and Calcite Flotation Behaviors with Salicylhydroxamic Acid as the Collector , 2020 .

[3]  Jonathan E. Sutton,et al.  Molecular Recognition at Mineral Interfaces: Implications for the Beneficiation of Rare Earth Ores. , 2020, ACS applied materials & interfaces.

[4]  K. Waters,et al.  A review of reagents applied to rare-earth mineral flotation. , 2020, Advances in colloid and interface science.

[5]  Lili Wu,et al.  Adsorption mechanism of alkyl hydroxamic acid onto bastnäsite: Fundamental steps toward rational collector design for rare earth elements. , 2019, Journal of colloid and interface science.

[6]  Jan D. Miller,et al.  Collector Chemistry for Bastnaesite Flotation – Recent Developments , 2019, Mineral Processing and Extractive Metallurgy Review.

[7]  Zhao Cao,et al.  Separation of bastnäsite from fluorite using ethylenediamine tetraacetic acid as depressant , 2019, Minerals Engineering.

[8]  R. Sacci,et al.  A new approach to vibrational sum frequency generation spectroscopy using near infrared pulse shaping. , 2019, The Review of scientific instruments.

[9]  Benjamin Doughty,et al.  Probing ligand removal and ordering at quantum dot surfaces using vibrational sum frequency generation spectroscopy. , 2019, Journal of colloid and interface science.

[10]  W. Yin,et al.  An investigation of the mechanism of using iron chelate as a collector during scheelite flotation , 2019, Minerals Engineering.

[11]  R. Ganguli,et al.  Rare earths: A review of the landscape , 2018 .

[12]  Benjamin Doughty,et al.  Flexible approach to vibrational sum-frequency generation using shaped near-infrared light. , 2018, Optics letters.

[13]  Etienne Garand,et al.  Revealing the structure of isolated peptides: IR-IR predissociation spectroscopy of protonated triglycine isomers , 2018 .

[14]  D. Nagaraj The Chemistry and Application of Chelating or Complexing Agents in Minerals Separations , 2018 .

[15]  F. Larachi,et al.  The effect of dissolved mineral species on bastnäsite, monazite and dolomite flotation using benzohydroxamate collector , 2018 .

[16]  Yijun Cao,et al.  Depression Mechanism of Strontium Ions in Bastnaesite Flotation with Salicylhydroxamic Acid as Collector , 2018 .

[17]  H. Cui,et al.  Alternative flowsheet for rare earth beneficiation of Bear Lodge ore , 2017 .

[18]  Jan D. Miller,et al.  Physical chemistry considerations in the selective flotation of bastnaesite with lauryl phosphate , 2017 .

[19]  V. S. Bryantsev,et al.  Absolute Molecular Orientation of Isopropanol at Ceria (100) Surfaces: Insight into Catalytic Selectivity from the Interfacial Structure , 2017 .

[20]  Xue Bian,et al.  Synthesis of 3-hydroxy-2-naphthyl hydroxamic acid collector: flotation performance and adsorption mechanism on bastnaesite , 2017 .

[21]  P. Kent,et al.  A comparative study of surface energies and water adsorption on Ce-bastnäsite, La-bastnäsite, and calcite via density functional theory and water adsorption calorimetry. , 2017, Physical chemistry chemical physics : PCCP.

[22]  C. T. Chiu,et al.  Iron Oxide Surface Chemistry: Effect of Chemical Structure on Binding in Benzoic Acid and Catechol Derivatives. , 2017, Langmuir : the ACS journal of surfaces and colloids.

[23]  H. Cui,et al.  Fundamental Studies on the Surface Chemistry of Ancylite, Calcite, and Strontianite , 2017, Journal of Sustainable Metallurgy.

[24]  V. Bocharova,et al.  Unraveling the Molecular Weight Dependence of Interfacial Interactions in Poly(2-vinylpyridine)/Silica Nanocomposites. , 2017, ACS macro letters.

[25]  Hong-Fei Wang,et al.  Sum frequency generation vibrational spectroscopy (SFG-VS) for complex molecular surfaces and interfaces: Spectral lineshape measurement and analysis plus some controversial issues , 2016 .

[26]  K. Waters,et al.  Beneficiation of the Nechalacho rare earth deposit: Flotation response using benzohydroxamic acid , 2016 .

[27]  F. Larachi,et al.  Hydroxamic acid interactions with solvated cerium hydroxides in the flotation of monazite and bastnäsite—Experiments and DFT study , 2016 .

[28]  Corby G. Anderson,et al.  Rare Earths: Market Disruption, Innovation, and Global Supply Chains , 2016 .

[29]  D. R. Nagaraj,et al.  Evolution of flotation chemistry and chemicals: A century of innovations and the lingering challenges ☆ , 2016 .

[30]  C. Morrison,et al.  A Computational and Experimental Study on the Binding of Dithio Ligands to Sperrylite, Pentlandite, and Platinum , 2016 .

[31]  Benjamin Doughty,et al.  Adsorption, Ordering, and Local Environments of Surfactant-Encapsulated Polyoxometalate Ions Probed at the Air-Water Interface. , 2016, Langmuir : the ACS journal of surfaces and colloids.

[32]  P. Kent,et al.  Crystal Structures, Surface Stability, and Water Adsorption Energies of La-Bastnäsite via Density Functional Theory and Experimental Studies , 2016 .

[33]  Radha Shivaramaiah,et al.  Thermodynamics of bastnaesite: A major rare earth ore mineral , 2016 .

[34]  V. Batista,et al.  Molecular titanium-hydroxamate complexes as models for TiO2 surface binding. , 2016, Chemical communications.

[35]  G. Mudd,et al.  A Detailed Assessment of Global Rare Earth Element Resources: Opportunities and Challenges , 2015 .

[36]  C. Anderson Improved understanding of rare earth surface chemistry and its application to froth flotation , 2015 .

[37]  C. Ekberg,et al.  Reclaiming rare earth elements from end-of-life products: A review of the perspectives for urban mining using hydrometallurgical unit operations , 2015 .

[38]  Jan D. Miller,et al.  Surface chemistry aspects of bastnaesite flotation with octyl hydroxamate , 2014 .

[39]  W. Austin Elam,et al.  Molecular Modeling for the Design of Novel Performance Chemicals and Materials , 2014, The Yale Journal of Biology and Medicine.

[40]  K. Waters,et al.  Surface chemistry considerations in the flotation of bastnasite , 2014 .

[41]  C. Tian,et al.  Recent progress on sum-frequency spectroscopy , 2014 .

[42]  M. Kidder,et al.  Aromatic-hydroxyl interaction of an alpha-aryl ether lignin model-compound on SBA-15, present at pyrolysis temperatures. , 2014, Physical chemistry chemical physics : PCCP.

[43]  Kendra Letchworth-Weaver,et al.  Implicit solvation model for density-functional study of nanocrystal surfaces and reaction pathways. , 2013, The Journal of chemical physics.

[44]  R. Frost,et al.  Infrared and Raman spectroscopic characterization of the carbonate mineral huanghoite - and in comparison with selected rare earth carbonates , 2013 .

[45]  S. Baldelli,et al.  Quantitative orientation analysis by sum frequency generation in the presence of near-resonant background signal: acetonitrile on rutile TiO2 (110). , 2013, The journal of physical chemistry. A.

[46]  Richard G. Hennig,et al.  Accuracy of exchange-correlation functionals and effect of solvation on the surface energy of copper , 2013 .

[47]  Douglas W. Fuerstenau,et al.  Design and development of novel flotation reagents for the beneficiation of Mountain Pass rare-earth ore , 2013 .

[48]  Adam Jordens,et al.  A review of the beneficiation of rare earth element bearing minerals , 2013 .

[49]  J. Kynický,et al.  Diversity of Rare Earth Deposits: The Key Example of China , 2012 .

[50]  A. Mariano Rare Earth Mining and Exploration in North America , 2012 .

[51]  G. Hope,et al.  Spectroscopic investigation of the interaction of hydroxamate with bastnaesite (cerium) and rare earth oxides , 2012 .

[52]  A. Al‐Saadi Conformational analysis and vibrational assignments of benzohydroxamic acid and benzohydrazide , 2012 .

[53]  Kui-Feng Yang,et al.  Mesoproterozoic carbonatitic magmatism in the Bayan Obo deposit, Inner Mongolia, North China: Constraints for the mechanism of super accumulation of rare earth elements , 2011 .

[54]  David J. Nesbitt,et al.  Defining the hydrogen bond: An account (IUPAC Technical Report) , 2011 .

[55]  E. Weiss,et al.  Surface-amplified ligand disorder in CdSe quantum dots determined by electron and coherent vibrational spectroscopies. , 2011, Journal of the American Chemical Society.

[56]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[57]  Marcel Maeder,et al.  Comprehensive study of the hydration and dehydration reactions of carbon dioxide in aqueous solution. , 2010, The journal of physical chemistry. A.

[58]  B. Sulzberger,et al.  ATR-FTIR spectroscopic study of the adsorption of desferrioxamine B and aerobactin to the surface of lepidocrocite (γ-FeOOH) , 2009 .

[59]  Himali D. Jayathilake,et al.  Molecular order in Langmuir-Blodgett monolayers of metal-ligand surfactants probed by sum frequency generation. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[60]  E. Brechin,et al.  Surface binding vs. sequestration; the uptake of benzohydroxamic acid at iron(iii) oxide surfaces. , 2008, Chemical communications.

[61]  Stephen B. Castor,et al.  THE MOUNTAIN PASS RARE-EARTH CARBONATITE AND ASSOCIATED ULTRAPOTASSIC ROCKS, CALIFORNIA , 2008 .

[62]  M. Kelley,et al.  Interaction of mineral surfaces with simple organic molecules by diffuse reflectance IR spectroscopy (DRIFT). , 2008, Journal of colloid and interface science.

[63]  M. M. El-Deeb,et al.  Equilibrium Studies of Binary Systems Involving Lanthanide and Actinide Metal Ions and Some Selected Aliphatic and Aromatic Monohydroxamic Acids , 2007 .

[64]  Achani K. Yatawara,et al.  Vibrational sum frequency generation spectroscopy of dodecanethiol on metal nanoparticles , 2007 .

[65]  A. Hubin,et al.  Adsorption of some benzohydroxamic acid derivatives on copper oxide: assignment and interpretation of SERS spectra , 2006 .

[66]  K. Eisenthal,et al.  Absolute orientation of molecules at interfaces. , 2006, The journal of physical chemistry. B.

[67]  W. Gan,et al.  Quantitative spectral and orientational analysis in surface sum frequency generation vibrational spectroscopy (SFG-VS) , 2005 .

[68]  N. Krishnamurthy,et al.  Extractive metallurgy of rare earths , 1992 .

[69]  Beena Rai,et al.  Molecular modeling and rational design of flotation reagents , 2003 .

[70]  T. Sreenivas,et al.  Surface chemistry and flotation of cassiterite with alkyl hydroxamates , 2002 .

[71]  Beena Rai,et al.  Molecular Modeling of Interactions of Diphosphonic Acid Based Surfactants with Calcium Minerals , 2002 .

[72]  S. Sánchez‐Cortés,et al.  Vibrational study of the salicylate interaction with metallic ions and surfaces. , 2000, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[73]  Holmes,et al.  Elucidating the mode of action of a corrosion inhibitor for iron , 2000, Chemistry.

[74]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[75]  B. Humbert,et al.  INFRARED AND RAMAN SPECTROSCOPICAL STUDIES OF SALICYLIC AND SALICYLATE DERIVATIVES IN AQUEOUS SOLUTION , 1998 .

[76]  Shaoxian Song,et al.  A new collector for rare earth mineral flotation , 1997 .

[77]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[78]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[79]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[80]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[81]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[82]  Hafner,et al.  Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. , 1994, Physical review. B, Condensed matter.

[83]  T. Zwier,et al.  The Ham bands revisited: spectroscopy and photophysics of the benzene-carbon tetrachloride complex , 1991 .

[84]  L. J. Drew,et al.  The Bayan Obo iron-rare-earth-niobium deposits, Inner Mongolia, China , 1990 .

[85]  Pradip,et al.  The adsorption of hydroxamate on semi-soluble minerals. Part I: Adsorption on barite, Calcite and Bastnaesite , 1983 .

[86]  Linus Pauling,et al.  THE NATURE OF THE CHEMICAL BOND. APPLICATION OF RESULTS OBTAINED FROM THE QUANTUM MECHANICS AND FROM A THEORY OF PARAMAGNETIC SUSCEPTIBILITY TO THE STRUCTURE OF MOLECULES , 1931 .

[87]  G. Kai,et al.  The influence of temperature on rare earth flotation with naphthyl hydroxamic acid , 2018 .

[88]  Laura Talens Peiró,et al.  Material and Energy Requirement for Rare Earth Production , 2013 .

[89]  K. R. Long,et al.  The Principal Rare Earth Elements Deposits of the United States: A Summary of Domestic Deposits and a Global Perspective , 2010 .

[90]  A. Peres,et al.  Utilisation of hydroxamates in minerals froth flotation , 1996 .

[91]  F. Villieras,et al.  The Mechanisms of Collector Adsorption-Abstraction (Ionic and Non-Ionic Surfactants) on Heterogeneous Surfaces , 1992 .

[92]  K. A. Matis,et al.  Flotation of Salt-Type Minerals , 1992 .

[93]  Pradip Design of crystal structure-specific surfactants based on molecular recognition at mineral surfaces , 1992 .

[94]  Pradip,et al.  Adsorption of hydroxamate collectors on semisoluble minerals Part II: Effect of temperature on adsorption , 1985 .

[95]  J.H.S. Green Vibrational spectra of benzene derivatives—XX Substituted benzoate ions and benzoic acids , 1977 .