Blowing up non-commutative smooth surfaces

In this paper we will think of certain abelian categories with favorable properties as non-commutative surfaces. We show that under certain conditions a point on a non-commutative surface can be blown up. This yields a new non-commutative surface which is in a certain sense birational to the original one. This construction is analogous to blowing up a Poisson surface in a point of the zero-divisor of the Poisson bracket. By blowing up $\le 8$ points in the elliptic quantum plane one obtains global non-commutative deformations of Del-Pezzo surfaces. For example blowing up six points yields a non-commutative cubic surface. Under a number of extra hypotheses we obtain a formula for the number of non-trivial simple objects on such non-commutative surfaces.

[1]  M. Bergh,et al.  Twisted homogeneous coordinate rings , 1990 .

[2]  R. Hartshorne Residues And Duality , 1966 .

[3]  A. Verevkin On a noncommutative analogue of the category of coherent sheaves on a projective scheme , 1992 .

[4]  James J. Zhang,et al.  Noncommutative Projective Schemes , 1994 .

[5]  M. Bergh,et al.  Graded Modules of Gelfand–Kirillov Dimension One over Three-Dimensional Artin–Schelter Regular Algebras , 1997 .

[6]  R. Street,et al.  Review of the elements of 2-categories , 1974 .

[7]  Askar A. Tuganbaev,et al.  Rings of quotients , 1998 .

[8]  K. Ajitabh Modules Over Elliptic Algebras and Quantum Planes , 1996 .

[9]  A. Bondal,et al.  REPRESENTATION OF ASSOCIATIVE ALGEBRAS AND COHERENT SHEAVES , 1990 .

[10]  M. Bergh,et al.  Modules over regular algebras of dimension 3 , 1991 .

[11]  R. Thomason,et al.  Higher Algebraic K-Theory of Schemes and of Derived Categories , 1990 .

[12]  M. Bergh,et al.  Central extensions of three dimensional Artin-Schelter regular algebras , 1996 .

[13]  A. Rosenberg Noncommutative Algebraic Geometry and Representations of Quantized Algebras , 1995 .

[14]  J. Fisher,et al.  Projective bundles , 1994 .

[15]  A. Neeman,et al.  Homotopy limits in triangulated categories , 1993 .

[16]  K. Ajitabh Modules over regular algebras and quantum planes , 1994 .

[17]  Saunders MacLane,et al.  Natural Associativity and Commutativity , 1963 .

[18]  Valery A. Lunts,et al.  Localization for quantum groups , 1999 .

[19]  M. Bergh A translation principle for Sklyanin algebras , 1996 .

[20]  A. Beilinson Coherent sheaves on Pn and problems of linear algebra , 1978 .

[21]  P. Gabriel,et al.  Des catégories abéliennes , 1962 .

[22]  T. Willmore Algebraic Geometry , 1973, Nature.

[23]  A. Bondal,et al.  HOMOLOGICAL PROPERTIES OF ASSOCIATIVE ALGEBRAS: THE METHOD OF HELICES , 1994 .

[24]  C. Hoffmann Algebraic curves , 1988 .

[25]  William F. Schelter,et al.  Graded algebras of global dimension 3 , 1987 .

[26]  James J. Zhang Twisted Graded Algebras and Equivalences of Graded Categories , 1996 .

[27]  Alexander Grothendieck,et al.  Sur quelques points d'algèbre homologique, I , 1957 .

[28]  S. P. Smith,et al.  Central extensions of three dimensional Artin–Schelter regular algebras , 1996 .

[29]  C. Nastasescu,et al.  Graded ring theory , 1982 .

[30]  A. Rosenberg The Spectrum of Abelian Categories and Reconstruction of Schemes , 2020 .