A Heterogeneous Clustering Approach for Human Activity Recognition

Human Activity Recognition (HAR) has a growing research interest due to the widespread presence of motion sensors on user’s personal devices. The performance of HAR system deployed on large-scale is often significantly lower than reported due to the sensor-, device-, and person-specific heterogeneities. In this work, we develop a new approach for clustering such heterogeneous data, represented as a time series, which incorporates different level of heterogeneities in the data within the model. Our method is to represent the heterogeneities as a hierarchy where each level in the hierarchy overcomes a specific heterogeneity (e.g., a sensor-specific heterogeneity). Experimental evaluation on Electromyography (EMG) sensor dataset with heterogeneities shows that our method performs favourably compared to other time series clustering approaches.

[1]  王人成,et al.  Terrain Identification for Prosthetic Knees Based on Electromyographic Signal Features , 2006 .

[2]  Dinesh Kant Kumar,et al.  Wavelet analysis of surface electromyography , 2003, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[3]  Robert D. Lipschutz,et al.  Robotic leg control with EMG decoding in an amputee with nerve transfers. , 2013, The New England journal of medicine.

[4]  Pietro Muliere,et al.  Extending the family of Bayesian bootstraps and exchangeable urn schemes , 1998 .

[5]  Pablo Montero,et al.  TSclust: An R Package for Time Series Clustering , 2014 .

[6]  Illia Horenko,et al.  An Adaptive Markov Chain Monte Carlo Approach to Time Series Clustering of Processes with Regime Transition Behavior , 2013, Multiscale Model. Simul..

[7]  Daniel Graupe,et al.  Functional Separation of EMG Signals via ARMA Identification Methods for Prosthesis Control Purposes , 1975, IEEE Transactions on Systems, Man, and Cybernetics.

[8]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[9]  Fan Zhang,et al.  Continuous Locomotion-Mode Identification for Prosthetic Legs Based on Neuromuscular–Mechanical Fusion , 2011, IEEE Transactions on Biomedical Engineering.

[10]  He Huang,et al.  A Strategy for Identifying Locomotion Modes Using Surface Electromyography , 2009, IEEE Transactions on Biomedical Engineering.

[11]  L. Koziris,et al.  The American Journal of Sports Medicine , 2004 .

[12]  Kevin B. Englehart,et al.  A robust, real-time control scheme for multifunction myoelectric control , 2003, IEEE Transactions on Biomedical Engineering.

[13]  Manuel Mendoza,et al.  Bayesian solvency analysis with autocorrelated observations , 2006 .

[14]  P. Boesiger,et al.  A new correlation‐based fuzzy logic clustering algorithm for FMRI , 1998, Magnetic resonance in medicine.

[15]  Joshua C. Kline,et al.  Decomposition of surface EMG signals. , 2006, Journal of neurophysiology.

[16]  D. Lindley,et al.  Bayes Estimates for the Linear Model , 1972 .

[17]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[18]  C. Morris,et al.  Inference for multivariate normal hierarchical models , 2000 .

[19]  Anthony S. Bryk,et al.  Hierarchical Linear Models: Applications and Data Analysis Methods , 1992 .

[20]  Alberto Contreras-Cristán,et al.  A Bayesian Nonparametric Approach for Time Series Clustering , 2014 .

[21]  Hugh Herr,et al.  User-adaptive control of a magnetorheological prosthetic knee , 2003, Ind. Robot.

[22]  Eamonn J. Keogh,et al.  A Complexity-Invariant Distance Measure for Time Series , 2011, SDM.

[23]  F. Mohd-Yasin,et al.  Techniques of EMG signal analysis: detection, processing, classification and applications , 2006, Biological Procedures Online.

[24]  Yee Whye Teh,et al.  Dirichlet Process , 2017, Encyclopedia of Machine Learning and Data Mining.

[25]  H. Akaike A new look at the statistical model identification , 1974 .

[26]  Michael Goldfarb,et al.  Multiclass Real-Time Intent Recognition of a Powered Lower Limb Prosthesis , 2010, IEEE Transactions on Biomedical Engineering.

[27]  Tim Dallas,et al.  Feature Selection and Activity Recognition System Using a Single Triaxial Accelerometer , 2014, IEEE Transactions on Biomedical Engineering.

[28]  Eamonn J. Keogh,et al.  On the Need for Time Series Data Mining Benchmarks: A Survey and Empirical Demonstration , 2002, Data Mining and Knowledge Discovery.

[29]  R.N. Scott,et al.  A new strategy for multifunction myoelectric control , 1993, IEEE Transactions on Biomedical Engineering.

[30]  Eamonn J. Keogh,et al.  A Novel Approximation to Dynamic Time Warping allows Anytime Clustering of Massive Time Series Datasets , 2012, SDM.

[31]  H. Herr,et al.  A Clinical Comparison of Variable-Damping and Mechanically Passive Prosthetic Knee Devices , 2005, American journal of physical medicine & rehabilitation.

[32]  S. Walker,et al.  Beta-Stacy processes and a generalization of the Polya urn scheme , 1997 .

[33]  Ling Bao,et al.  Activity Recognition from User-Annotated Acceleration Data , 2004, Pervasive.

[34]  J. Geweke,et al.  Bayesian Forecasting , 2004 .

[35]  D. Peña,et al.  Multivariate Analysis in Vector Time Series , 2000 .

[36]  Andreas M. Brandmaier,et al.  pdc: An R package for complexity-based clustering of time series [Computer software] , 2015 .

[37]  B. Efron,et al.  Empirical Bayes on vector observations: An extension of Stein's method , 1972 .

[38]  Michael Goldfarb,et al.  Volitional Control of a Prosthetic Knee Using Surface Electromyography , 2011, IEEE Transactions on Biomedical Engineering.

[39]  T W Williams,et al.  Practical methods for controlling powered upper-extremity prostheses. , 1990, Assistive technology : the official journal of RESNA.

[40]  Mikkel Baun Kjærgaard,et al.  Smart Devices are Different: Assessing and MitigatingMobile Sensing Heterogeneities for Activity Recognition , 2015, SenSys.

[41]  Giovanni Petris,et al.  Dynamic Linear Models with R , 2009 .

[42]  T. Warren Liao,et al.  Clustering of time series data - a survey , 2005, Pattern Recognit..

[43]  Angelo M. Sabatini,et al.  Online Decoding of Hidden Markov Models for Gait Event Detection Using Foot-Mounted Gyroscopes , 2014, IEEE Journal of Biomedical and Health Informatics.

[44]  C. Snijders,et al.  The Posterior Layer of the Thoracolumbar Fascia|Its Function in Load Transfer From Spine to Legs , 1995, Spine.

[45]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[46]  Robert J. Connor,et al.  Concepts of Independence for Proportions with a Generalization of the Dirichlet Distribution , 1969 .

[47]  Janice K. Loudon,et al.  The Clinical Orthopedic Assessment Guide , 1998 .

[48]  Lancelot F. James,et al.  Gibbs Sampling Methods for Stick-Breaking Priors , 2001 .

[49]  R. Scott,et al.  Myoelectric control of prostheses. , 1986, Critical reviews in biomedical engineering.

[50]  Eamonn J. Keogh,et al.  MDL-based time series clustering , 2012, Knowledge and Information Systems.

[51]  H. Ishwaran,et al.  Markov chain Monte Carlo in approximate Dirichlet and beta two-parameter process hierarchical models , 2000 .

[52]  Max Ortiz-Catalan,et al.  BioPatRec: A modular research platform for the control of artificial limbs based on pattern recognition algorithms , 2013, Source Code for Biology and Medicine.

[53]  Bin Ma,et al.  The similarity metric , 2001, IEEE Transactions on Information Theory.

[54]  Michael A. West,et al.  Exploratory Modelling of Multiple Non-Stationary Time Series: Latent Process Structure and Decompositions , 1997 .

[55]  Donald B. Percival,et al.  The discrete wavelet transform and the scale analysis of the surface properties of sea ice , 1996, IEEE Trans. Geosci. Remote. Sens..

[56]  Eamonn J. Keogh,et al.  LB_Keogh supports exact indexing of shapes under rotation invariance with arbitrary representations and distance measures , 2006, VLDB.

[57]  Jorge Caiado,et al.  A periodogram-based metric for time series classification , 2006, Comput. Stat. Data Anal..

[58]  G Van der Perre,et al.  Development of EMG-based mode and intent recognition algorithms for a computer-controlled above-knee prosthesis. , 1990, Journal of biomedical engineering.