Multicenter evaluation of different target volume delineation concepts in pediatric Hodgkin’s lymphoma

Background and purposeIn pediatric Hodgkin’s lymphoma (PHL) improvements in imaging and multiagent chemotherapy have allowed for a reduction in target volume. The involved-node (IN) concept is being tested in several treatment regimens for adult Hodgkin’s lymphoma. So far there is no consensus on the definition of the IN. To improve the reproducibility of the IN, we tested a new involved-node-level (INL) concept, using defined anatomical boundaries as basis for target delineation. The aim was to evaluate the feasibility of IN and INL concepts for PHL in terms of interobserver variability.Patients and methodsThe INL concept was defined for the neck and mediastinum by the PHL Radiotherapy Group based on accepted concepts for solid tumors. Seven radiation oncologists from six European centers contoured neck and mediastinal clinical target volumes (CTVs) of 2 patients according to the IN and the new INL concepts. The median CTVs, coefficient of variation (COV), and general conformity index (CI) were assessed. The intraclass correlation coefficient (ICC) for reliability of delineations was calculated.ResultsAll observers agreed that INL is a feasible and practicable delineation concept resulting in stronger interobserver concordance than the IN (mediastinum CIINL = 0.39 vs. CIIN = 0.28, neck left CIINL = 0.33; CIIN = 0.18; neck right CIINL = 0.24, CIIN = 0.14). The COV showed less dispersion and the ICC indicated higher reliability of contouring for INL (ICCINL = 0.62, p < 0.05) as for IN (ICCIN = 0.40, p < 0.05).ConclusionINL is a practical and feasible alternative to IN resulting in more homogeneous target delineation, and it should be therefore considered as a future target volume concept in PHL.ZusammenfassungHintergrund und ZielsetzungIm Rahmen der risikoadaptierten Therapie und verbesserten Bildgebung konnte bei pädiatrischen Hodgkin-Erkrankungen (PHL) das Bestrahlungsvolumen sukzessiv verkleinert werden. Die Involved-node-Bestrahlung (IN) wird zurzeit in verschiedenen Studien an Erwachsenen durchgeführt. Bisher gibt es keine einheitliche IN-Definition. Um eine verbesserte Reproduzierbarkeit zu erreichen, wird die Involved-node-level-Bestrahlung (INL) als Zielvolumenkonzept eingesetzt. Studienziel war es, anhand von Analysen der Interbeobachtervariation die Umsetzbarkeit von IN und INL bei PHL zu überprüfen.Patienten und MethodenEntsprechend der IN- und INL-Definition konturierten 7 Strahlentherapeuten aus 6 europäischen Zentren ein zervikales und ein mediastinales klinisches Zielvolumen (CTV) von 2 PHL-Patienten. Das mediane CTV, der Variationskoeffizient (COV) und der Konfomitätsindex (CI) wurden ermittelt. Die Intraklassenkorrelation (ICC) wurde zur Bestimmung der Konturierungsreliabilität innerhalb des IN- und INL-Konzepts berechnet.ErgebnisseDas mediane CTVINL war größer als das mediane CTVIN. Die Interbeobachterübereinstimmung war bei der INL im Vergleich zur IN besser (Mediastinum: CIINL = 0,39; CIIN = 0,28; Hals links: CIINL = 0,33; CIIN = 0,18; Hals rechts: CIINL = 0,24; CIIN = 0,14). Der COV zeigte eine geringere Streuung bei der INL-Konturierung, die ICC weist eine bessere Konturierungsreliabilität innerhalb der INL (ICCINL = 0,62, p < 0,05) im Vergleich zur IN (ICCIN = 0,40, p < 0,05) auf.SchlussfolgerungDie INL ist eine praktikable und reproduzierbare Alternative zur IN, die zu einer homogeneren Konturierung führt und sich somit als Zielvolumenkonzept für PHL empfiehlt.

[1]  R. Pötter,et al.  Paediatric Hodgkin's disease. , 1999, European journal of cancer.

[2]  B. Heijmen,et al.  Geometrical uncertainties, radiotherapy planning margins, and the ICRU-62 report. , 2002, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[3]  C. Hess,et al.  The Impact of Gross Tumor Volume (GTV) and Clinical Target Volume (CTV) Definition on the Total Accuracy in Radiotherapy , 2003, Strahlentherapie und Onkologie.

[4]  Thomas Filleron,et al.  Coregistration of prechemotherapy PET-CT for planning pediatric Hodgkin's disease radiotherapy significantly diminishes interobserver variability of clinical target volume definition. , 2011, International journal of radiation oncology, biology, physics.

[5]  T. Wiegel,et al.  Second Malignancies in High‑Dose Areas of Previous Tumor Radiotherapy , 2010, Strahlentherapie und Onkologie.

[6]  M. Stock,et al.  Critical discussion of evaluation parameters for inter-observer variability in target definition for radiation therapy , 2012, Strahlentherapie und Onkologie.

[7]  Vincenzo Valentini,et al.  Interobserver variability of clinical target volume delineation in supra-diaphragmatic Hodgkin’s disease , 2011, Strahlentherapie und Onkologie.

[8]  R. Pötter,et al.  High cure rates and reduced long-term toxicity in pediatric Hodgkin's disease: the German-Austrian multicenter trial DAL-HD-90. The German-Austrian Pediatric Hodgkin's Disease Study Group. , 1999, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[9]  A. Bitencourt,et al.  Conformal radiotherapy for lung cancer: interobservers' variability in the definition of gross tumor volume between radiologists and radiotherapists , 2009, Radiation oncology.

[10]  Richard Pötter,et al.  Feasibility of CBCT-based target and normal structure delineation in prostate cancer radiotherapy: multi-observer and image multi-modality study. , 2011, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[11]  Randall K Ten Haken,et al.  CT-based definition of thoracic lymph node stations: an atlas from the University of Michigan. , 2005, International journal of radiation oncology, biology, physics.

[12]  H. Eich,et al.  Quality control of involved-field radiotherapy for patients with early stage Hodgkin’s lymphoma based on a central prospective review , 2012, Strahlentherapie und Onkologie.

[13]  H. Eich,et al.  The Development of Quality Assurance Programs for Radiotherapy within the German Hodgkin Study Group (GHSG) , 2005, Strahlentherapie und Onkologie.

[14]  W. Klapper,et al.  Procarbazine-free OEPA-COPDAC chemotherapy in boys and standard OPPA-COPP in girls have comparable effectiveness in pediatric Hodgkin's lymphoma: the GPOH-HD-2002 study. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[15]  H. O. Wyckoff,et al.  International Commission on Radiation Units and Measurements , 1975 .

[16]  Icru Prescribing, recording, and reporting photon beam therapy , 1993 .

[17]  K. Ang,et al.  CT-based delineation of lymph node levels and related CTVs in the node-negative neck: DAHANCA, EORTC, GORTEC, NCIC,RTOG consensus guidelines. , 2003, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[18]  E. Noordijk,et al.  Involved-node radiotherapy (INRT) in patients with early Hodgkin lymphoma: concepts and guidelines. , 2006, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[19]  R. Fisher,et al.  Measurement of lung tumor volumes using three-dimensional computer planning software. , 2002, International journal of radiation oncology, biology, physics.

[20]  Melvin L. Griem,et al.  Prescribing, Recording, and Reporting Photon Beam Therapy , 1994 .

[21]  R. Gascoyne,et al.  Involved-nodal radiation therapy as a component of combination therapy for limited-stage Hodgkin's lymphoma: a question of field size. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[22]  E. Noordijk,et al.  The conundrum of Hodgkin lymphoma nodes: to be or not to be included in the involved node radiation fields. The EORTC-GELA lymphoma group guidelines. , 2008, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[23]  L. Gianolli,et al.  PET-guided dose escalation tomotherapy in malignant pleural mesothelioma , 2011, Strahlentherapie und Onkologie.

[24]  R. Pötter,et al.  The Concept of the GPOH-HD 2003 Therapy Study for Pediatric Hodgkin's Disease: Evolution in the Tradition of the DAL/GPOH Studies , 2004, Klinische Padiatrie.

[25]  S. Senan,et al.  Involved-node radiotherapy to the mediastinum. , 2007, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[26]  E. Kouwenhoven,et al.  Measuring the similarity of target volume delineations independent of the number of observers , 2009, Physics in medicine and biology.

[27]  H. Eich,et al.  Involved-Node Radiotherapy in Early-Stage Hodgkin’s Lymphoma , 2008, Strahlentherapie und Onkologie.

[28]  R. Pötter,et al.  Preliminary results of the multicenter trial GPOH-HD 95 for the treatment of Hodgkin's disease in children and adolescents: analysis and outlook. , 2003, Klinische Padiatrie.

[29]  P. Lambin,et al.  The Use of FDG-PET to Target Tumors by Radiotherapy , 2010, Strahlentherapie und Onkologie.