On the distribution of partial sums of irrational rotations

For an irrational $$\alpha $$α, we investigate the sums $$\sum _{i=1}^n \left( \{i \alpha \} - \frac{1}{2} \right) $$∑i=1n{iα}-12 and $$\sum _{i=1}^n \left\{ \left( \{i \alpha \} - \frac{1}{2} \right) ^2 - \frac{1}{12} \right\} $$∑i=1n{iα}-122-112. We discuss exact formulae and asymptotic estimates for these sums and point out interesting geometrical properties of their graphs in the case when the continued fraction expansion of $$\alpha $$α has a large isolated partial quotient.

[1]  Mukarram Ahmad,et al.  Continued fractions , 2019, Quadratic Number Theory.

[2]  Naoto Shimaru,et al.  On discrepancies of irrational rotations: an approach via rational rotation , 2017, Period. Math. Hung..

[3]  A. Khintchine Einige Sätze über Kettenbrüche, mit Anwendungen auf die Theorie der Diophantischen Approximationen , 1924 .

[4]  Naoto Shimaru,et al.  Continued fractions and irrational rotations , 2017, Period. Math. Hung..

[5]  On the discrepancy of irrational rotations with isolated large partial quotients: long term effects , 2015 .

[6]  Jade Vinson Partial Sums of ζ(½) Modulo 1 , 2001, Exp. Math..

[7]  M. Iosifescu,et al.  Metrical Theory of Continued Fractions , 2002 .

[8]  K. Takashima,et al.  An upper estimate for the discrepancy of irrational rotations , 2017 .

[9]  Johannes Schoißengeier On the discrepancy of (nα) , 1984 .

[10]  J. Littlewood,et al.  Some Problems of Diophantine Approximation: The Lattice-Points of a Right-Angled Triangle , 1922 .

[11]  A. Ostrowski Bemerkungen zur Theorie der Diophantischen Approximationen , 1922 .

[12]  József Beck Probabilistic Diophantine Approximation , 2014 .

[13]  Probabilistic Diophantine Approximation: Randomness in Lattice Point Counting , 2014 .

[14]  E. Hecke,et al.  Über analytische Funktionen und die Verteilung von Zahlen mod. eins , 1922 .

[15]  On discrepancies of irrational rotations with several large partial quotients , 2018, Acta Mathematica Hungarica.

[16]  On the Extremal Theory of Continued Fractions , 2016 .

[17]  H. Behnke Über die Verteilung von Irrationalitäten mod. 1 , 1922 .

[18]  G. H. Hardy,et al.  Some problems of Diophantine approximation: The lattice-points of a right-angled triangle. (Second memoir.) , 1922 .

[19]  Lauwerens Kuipers,et al.  Uniform distribution of sequences , 1974 .

[20]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[21]  Yoshiyuki Morie,et al.  On the distribution of the leading digit of $$a^n$$an: a study via $$\chi ^2$$χ2 statistics , 2016, Period. Math. Hung..

[22]  A. Khintchine Ein Satz über Kettenbrüche, mit arithmetischen Anwendungen , 1923 .

[23]  On the discrepancy of (nα), II , 1986 .