Advancing integrated photonics and microreactor technologies with ultrafast laser processing

We present our latest progresses on the development of integrated photonic devices as well as microfluidic chips of unprecedented characteristics and performances using femtosecond laser micromachining. We demonstrate ultra-high Q microresonators in lithium niobate on insulator (LNOI), on-chip micro-laser and waveguide amplifier, and high-throughput micro-chemical reactor. The achievements are the result of persistent effort on improving the precision and efficiency in ultrafast laser processing.

[1]  Ya Cheng,et al.  Broadband Quasi-Phase-Matched Harmonic Generation in an On-Chip Monocrystalline Lithium Niobate Microdisk Resonator. , 2019, Physical review letters.

[2]  J. Lewis,et al.  Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly , 2003, Nature materials.

[3]  Y. Kong,et al.  Microdisk lasers on an erbium-doped lithium-niobite chip , 2020, Science China Physics, Mechanics & Astronomy.

[4]  Fang Liu,et al.  Three-Dimensional Laser Printing of Macro-Scale Glass Objects at a Micro-Scale Resolution , 2019, Micromachines.

[5]  Ya Cheng,et al.  On-chip tunable microdisk laser fabricated on Er3+-doped lithium niobate on insulator. , 2020, Optics letters.

[6]  Ya Cheng,et al.  Phase-Matched Second-Harmonic Generation in an On-Chip L i NbO 3 Microresonator , 2016 .

[7]  S. Sunada,et al.  Theory of two-dimensional microcavity lasers , 2005 .

[8]  M. Lončar,et al.  Electronically programmable photonic molecule , 2018, Nature Photonics.

[9]  Ya Cheng,et al.  Effective four-wave mixing in the lithium niobate on insulator microdisk by cascading quadratic processes. , 2019, Optics letters.

[10]  Brian N. Johnson,et al.  An integrated nanoliter DNA analysis device. , 1998, Science.

[11]  Christian J. Killow,et al.  Hydroxide-catalysis bonding for stable optical systems for space , 2005 .

[12]  Zin Lin,et al.  Integrated high quality factor lithium niobate microdisk resonators. , 2014, Optics express.

[13]  Vladimir Viktorov,et al.  Experimental comparative mixing performance of passive micromixers with H-shaped sub-channels , 2012 .

[14]  Jan Wiersig,et al.  Combining directional light output and ultralow loss in deformed microdisks. , 2007, Physical review letters.

[15]  Cheng Wang,et al.  Efficient erbium-doped thin-film lithium niobate waveguide amplifiers. , 2021, Optics letters.

[16]  Junjie Li,et al.  High-Q lithium niobate microdisk resonators on a chip for efficient electro-optic modulation. , 2015, Optics express.

[17]  Huiying Hu,et al.  Lithium niobate on insulator (LNOI) for micro‐photonic devices , 2012 .

[18]  Ya Cheng,et al.  Long Low-Loss-Litium Niobate on Insulator Waveguides with Sub-Nanometer Surface Roughness , 2018, Nanomaterials.

[19]  Akira Goto,et al.  Analysis and multi-criteria design optimization of geometric characteristics of grooved micromixer , 2010 .

[20]  S. Boriskina,et al.  Coupling of whispering-gallery modes in size-mismatched microdisk photonic molecules. , 2007, Optics letters.

[21]  Q. Gong,et al.  Photonic molecule quantum optics , 2020 .

[22]  Yan Du,et al.  Evaluation of Floor-grooved Micromixers using Concentration-channel Length Profiles , 2010, Micromachines.

[23]  Ya Cheng,et al.  High-Q Exterior Whispering-Gallery Modes in a Double-Layer Crystalline Microdisk Resonator. , 2019, Physical review letters.

[24]  Ya Cheng,et al.  Efficient electro-optical tuning of an optical frequency microcomb on a monolithically integrated high-Q lithium niobate microdisk. , 2019, Optics letters.

[25]  Ya Cheng,et al.  Real-time electrical tuning of an optical spring on a monolithically integrated ultrahigh Q lithium nibote microresonator. , 2018, Optics letters.

[26]  Ya Cheng,et al.  Chemo-mechanical polish lithography: A pathway to low loss large-scale photonic integration on lithium niobate on insulator , 2019, Quantum Eng..

[27]  Shiyue Hua,et al.  Parity–time symmetry and variable optical isolation in active–passive-coupled microresonators , 2014, Nature Photonics.

[28]  Shanhui Fan,et al.  Parity–time-symmetric whispering-gallery microcavities , 2013, Nature Physics.

[29]  Ya Cheng Ultrafast Laser Processing : From Micro- to Nanoscale , 2013 .

[30]  D. Christodoulides,et al.  Parity-time–symmetric microring lasers , 2014, Science.

[31]  Xianfeng Chen,et al.  Cascading second-order nonlinear processes in a lithium niobate-on-insulator microdisk. , 2017, Optics letters.

[32]  P. Winzer,et al.  Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages , 2018, Nature.

[33]  Koji Sugioka,et al.  Rapid prototyping of three-dimensional microfluidic mixers in glass by femtosecond laser direct writing. , 2012, Lab on a chip.

[34]  Ya Cheng,et al.  Monolithic integration of a lithium niobate microresonator with a free-standing waveguide using femtosecond laser assisted ion beam writing , 2017, Scientific Reports.

[35]  Ya Cheng,et al.  Fabrication of Crystalline Microresonators of High Quality Factors with a Controllable Wedge Angle on Lithium Niobate on Insulator , 2019, Nanomaterials.

[36]  Arnan Mitchell,et al.  Status and Potential of Lithium Niobate on Insulator (LNOI) for Photonic Integrated Circuits , 2018 .

[37]  F. Gao,et al.  Sum-frequency generation in on-chip lithium niobate microdisk resonators , 2017 .

[38]  Lute Maleki,et al.  Nonlinear optics and crystalline whispering gallery mode cavities. , 2004, Physical review letters.

[39]  R. Stoian,et al.  Advances in ultrafast laser structuring of materials at the nanoscale , 2020 .

[40]  Ya Cheng,et al.  Fabrication of high-Q lithium niobate microresonators using femtosecond laser micromachining , 2015, Scientific Reports.

[41]  Qiang Lin,et al.  A self-starting bi-chromatic LiNbO3 soliton microcomb , 2018, 1812.09610.

[42]  Ya Cheng,et al.  Strong nonlinear optics in on-chip coupled lithium niobate microdisk photonic molecules , 2020, New Journal of Physics.

[43]  Wei C. Jiang,et al.  Chip-scale cavity optomechanics in lithium niobate , 2016, Scientific Reports.

[44]  Demetrios N. Christodoulides,et al.  Enhanced sensitivity at higher-order exceptional points , 2017, Nature.

[45]  M. Chekhova,et al.  A versatile source of single photons for quantum information processing , 2012, Nature Communications.

[46]  Ya Cheng,et al.  On‐Chip Integrated Waveguide Amplifiers on Erbium‐Doped Thin‐Film Lithium Niobate on Insulator , 2021, Laser & Photonics Reviews.

[47]  Philippe Carrière On a three-dimensional implementation of the baker’s transformation , 2007 .

[48]  Yuping Chen,et al.  On-chip erbium-doped lithium niobate microcavity laser , 2020, Science China Physics, Mechanics & Astronomy.

[49]  Yong Jin,et al.  Visualization of micro-scale mixing in miscible liquids using μ-LIF technique and drug nano-particle preparation in T-shaped micro-channels , 2012 .

[50]  Zheng Gong,et al.  Periodically poled thin-film lithium niobate microring resonators with a second-harmonic generation efficiency of 250,000%/W , 2019 .

[51]  Y. Kong,et al.  Recent Progress in Lithium Niobate: Optical Damage, Defect Simulation, and On‐Chip Devices , 2019, Advanced materials.

[52]  Qiang Lin,et al.  On-chip second-harmonic generation and broadband parametric down-conversion in a lithium niobate microresonator. , 2017, Optics express.

[53]  G. Solomon,et al.  Local chirality of optical resonances in ultrasmall resonators. , 2012, Physical review letters.

[54]  Sheila Rowan,et al.  Mechanical losses associated with the technique of hydroxide-catalysis bonding of fused silica , 1998 .

[55]  K. Miura,et al.  Writing waveguides in glass with a femtosecond laser. , 1996, Optics letters.

[56]  Wei C. Jiang,et al.  Nonlinear optical oscillation dynamics in high-Q lithium niobate microresonators. , 2017, Optics express.

[57]  J. Wiersig,et al.  Goos-Hänchen shift and localization of optical modes in deformed microcavities. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[58]  Daoxin Dai,et al.  Highly sensitive digital optical sensor based on cascaded high-Q ring-resonators. , 2009, Optics express.

[59]  Ya Cheng,et al.  On-chip electro-optic tuning of a lithium niobate microresonator with integrated in-plane microelectrodes. , 2016, Optics express.

[60]  Ya Cheng,et al.  High-index-contrast single-mode optical waveguides fabricated on lithium niobate by photolithography assisted chemo-mechanical etching (PLACE) , 2020, Japanese Journal of Applied Physics.

[61]  Ya Cheng,et al.  Polarization-insensitive space-selective etching in fused silica induced by picosecond laser irradiation , 2018, Applied Surface Science.

[62]  Ya Cheng,et al.  Lithium niobate micro-disk resonators of quality factors above 107. , 2018, Optics letters.

[63]  J. Nishii,et al.  Femtosecond laser-assisted three-dimensional microfabrication in silica. , 2001, Optics letters.

[64]  Tzyy-Jiann Wang,et al.  On-Chip Optical Microresonators With High Electro-Optic Tuning Efficiency , 2020, Journal of Lightwave Technology.

[65]  Tzyy-Jiann Wang,et al.  Electro-optically tunable microring resonators on lithium niobate. , 2007, Optics letters.

[66]  P. Xu,et al.  On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits. , 2014, Physical review letters.

[67]  L. Liu,et al.  High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond , 2018, Nature Photonics.

[68]  Fresnel filtering in lasing emission from scarred modes of wave-chaotic optical resonators. , 2002, Physical review letters.