Cyclopropenone (c-H2C3O): A New Interstellar Ring Molecule

The three-carbon keto ring cyclopropenone (c-H2C 3O) has been detected largely in absorption with the 100 m Green Bank Telescope (GBT) toward the star-forming region Sagittarius B2(N) by means of a number of rotational transitions between energy levels that have energies less than 10 K. Previous negative results from searches for interstellar c-H2C3O by other investigators attempting to detect rotational transitions that have energy levels ~10 K or greater indicate no significant hot core component. Thus, we conclude that only the low-energy levels of c-H2C3O are populated because the molecule state temperature is low, suggesting that c-H2C3O resides in a star-forming core halo region that has a widespread arcminute spatial scale. Toward Sagittarius B2(N), the GBT was also used to observe the previously reported, spatially ubiquitous, three-carbon ring cyclopropenylidene (c-C3H2 ), which has a divalent carbon that makes it highly reactive in the laboratory. The presence of both c-C3H2 and c-H2C3O toward Sagittarius B2(N) suggests that gas-phase oxygen addition may account for the synthesis of c-H 2C3O from c-C3H2. We also searched for but did not detect the three-carbon sugar glyceraldehyde (CH2OHCHOHCHO).

[1]  R. J. Myers,et al.  Microwave Spectrum, Structure, and Dipole Moment of Cyclopropene , 1959 .

[2]  A. Stark,et al.  The AST/RO Survey of the Galactic Center Region. I. The Inner 3 Degrees , 2002, astro-ph/0211025.

[3]  R. Breslow The Nature of Aromatic Molecules , 1972 .

[4]  J. M. Hollis,et al.  Green Bank Telescope Detection of New Interstellar Aldehydes: Propenal and Propanal , 2004 .

[5]  R. Suenram,et al.  The microwave spectrum of the C3 sugars: glyceraldehyde and 1,3-dihydroxy-2-propanone and the dehydration product 2-hydroxy-2-propen-1-al , 2003 .

[6]  H. Günthard,et al.  Stark effect and isometric groups of nonrigid molecules. , 1978 .

[7]  Y. Kuan,et al.  Acetic Acid in the Hot Cores of Sagitarrius B2(N) and W51 , 2002 .

[8]  J. Chengalur,et al.  Widespread acetaldehyde near the galactic centre , 2003, astro-ph/0304406.

[9]  P. Thaddeus,et al.  Laboratory and astronomical identification of cyclopropenylidene, C3H2. , 1985 .

[10]  Juan Carlos Cortés López,et al.  Millimeter-wave spectrum of cyclopropenone, C3H2O , 1990 .

[11]  J. M. Hollis,et al.  Confirmation of Interstellar Acetone , 2002 .

[12]  J. M. Hollis,et al.  Green Bank Telescope Observations of Interstellar Glycolaldehyde: Low-Temperature Sugar , 2004 .

[13]  Victor W. Laurie,et al.  Microwave spectrum and structure of cyclopropene , 1975 .

[14]  Y. Kuan,et al.  Complex Molecules in Sagittarius B2(N): The Importance of Grain Chemistry , 1995 .

[15]  K. Menten,et al.  44 GHz Methanol Masers and Quasi-Thermal Emission in Sagittarius B2 , 1997 .

[16]  A. D. McLean,et al.  Calculations concerning interstellar isomeric abundance ratios for C3H and C3H2. , 1993, The Astrophysical journal.

[17]  R. Brown,et al.  Stark effect measurements of molecular dipole moments , 1984 .

[18]  J. M. Hollis,et al.  The Spatial Scale of Glycolaldehyde in the Galactic Center , 2001 .

[19]  W. Flygare,et al.  Molecular g Values, Magnetic Susceptibilities, Molecular Quadrupole Moments, and Sign of the Electric Dipole Moment in Cyclopropene , 1969 .

[20]  F. Lovas,et al.  Microwave spectra of molecules of astrophysical interest: XXIII : Acetaldehyde , 1996 .

[21]  J. M. Hollis,et al.  Interstellar Glycolaldehyde: The First Sugar , 2000 .

[22]  R. W. Haas,et al.  Absolute calibration of millimeter-wavelength spectral lines , 1976 .

[23]  W. Irvine,et al.  The hydrocarbon ring C3H2 is ubiquitous in the Galaxy. , 1985, The Astrophysical journal.

[24]  G. Winnewisser The ground state of propynal , 1973 .

[25]  R. C. Benson,et al.  Microwave spectrum, substitutional structure, and Stark and Zeeman effects in cyclopropenone , 1973 .

[26]  C. Costain,et al.  Microwave Spectrum and Structure of Propynal (H–C≡C–CHO) , 1959 .

[27]  K. Shimoda,et al.  Infrared-microwave double resonance of propynal by using the 3.51 μm HeXe laser , 1976 .

[28]  F. Lovas,et al.  Detection and Confirmation of Interstellar Acetic Acid , 1997 .

[29]  E. Herbst,et al.  Theoretical reinvestigation of hydrocarbon and cyanoacetylene abundances in TMC-1 , 1984 .

[30]  M. Bogey,et al.  The millimeter and submillimeter wave spectrum of cyclopropene , 1986 .

[31]  P. Shevlin,et al.  Formation of carbohydrates in the reaction of atomic carbon with water , 1992 .

[32]  G. P. Forêts,et al.  Theoretical studies of interstellar molecular shocks – VI. The formation of molecules containing two or three carbon atoms , 1987 .

[33]  W. Irvine,et al.  Searches for new interstellar molecules, including a tentative detection of aziridine and a possible detection of propenal. , 2001, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[34]  S. Yamamoto,et al.  Microwave spectra and electric dipole moments for low-J levels of interstellar radicals : SO, C2S, C3S, c-HC3, CH2CC, and c-C3H2 , 1992 .

[35]  M. Robertson,et al.  Rates of decomposition of ribose and other sugars: implications for chemical evolution. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[36]  J. Pedelty,et al.  Kinematics of the Sagittarius B2(N-LMH) Molecular Core , 2003 .

[37]  Barry N. Taylor,et al.  Guidelines for Evaluating and Expressing the Uncertainty of Nist Measurement Results , 2017 .

[38]  D. Buhl,et al.  Millimeter emission lines in Orion A , 1976 .