The 60 pc Environment of FRB 20180916B

Fast radio burst FRB 20180916B in its host galaxy SDSS J015800.28+654253.0 at 149 Mpc is by far the closest-known FRB with a robust host galaxy association. The source also exhibits a 16.35 day period in its bursting. Here we present optical and infrared imaging as well as integral field spectroscopy observations of FRB 20180916B with the WFC3 camera on the Hubble Space Telescope and the MEGARA spectrograph on the 10.4 m Gran Telescopio Canarias. The 60–90 milliarcsecond (mas) resolution of the Hubble imaging, along with the previous 2.3 mas localization of FRB 20180916B, allows us to probe its environment with a 30–60 pc resolution. We constrain any point-like star formation or H ii region at the location of FRB 20180916B to have an Hα luminosity LHα ≲ 1037 erg s−1, and we correspondingly constrain the local star formation rate to be ≲10−4 M⊙ yr−1. The constraint on Hα suggests that possible stellar companions to FRB 20180916B should be of a cooler, less massive spectral type than O6V. FRB 20180916B is 250 pc away (in projected distance) from the brightest pixel of the nearest young stellar clump, which is ∼380 pc in size (FWHM). With the typical projected velocities of pulsars, magnetars, or neutron stars in binaries (60–750 km s−1), FRB 20180916B would need 800 kyr to 7 Myr to traverse the observed distance from its presumed birth site. This timescale is inconsistent with the active ages of magnetars (≲10 kyr). Rather, the inferred age and observed separation are compatible with the ages of high-mass X-ray binaries and gamma-ray binaries, and their separations from the nearest OB associations.

[1]  C. Bochenek,et al.  Localized Fast Radio Bursts Are Consistent with Magnetar Progenitors Formed in Core-collapse Supernovae , 2021 .

[2]  R. Strom,et al.  Fast radio bursts: do repeaters and non-repeaters originate in statistically similar ensembles? , 2020, Monthly Notices of the Royal Astronomical Society.

[3]  J. Hessels,et al.  Microsecond polarimetry of the repeating FRB 20180916B , 2020, 2010.05800.

[4]  X. L. Chen,et al.  Diverse polarization angle swings from a repeating fast radio burst source , 2020, Nature.

[5]  T. Prince,et al.  Multiwavelength Radio Observations of Two Repeating Fast Radio Burst Sources: FRB 121102 and FRB 180916.J0158+65 , 2020, The Astrophysical Journal.

[6]  C. Bochenek,et al.  Localized FRBs are Consistent with Magnetar Progenitors Formed in Core-Collapse Supernovae , 2020, 2009.13030.

[7]  G. Desvignes,et al.  Rotation Measure Evolution of the Repeating Fast Radio Burst Source FRB 121102 , 2020, The Astrophysical Journal.

[8]  J. Prochaska,et al.  Confronting the Magnetar Interpretation of Fast Radio Bursts through Their Host Galaxy Demographics , 2020, The Astrophysical Journal Letters.

[9]  J. Prochaska,et al.  Host Galaxy Properties and Offset Distributions of Fast Radio Bursts: Implications for Their Progenitors , 2020, The Astrophysical Journal.

[10]  O. I. Wong,et al.  Limits on Precursor and Afterglow Radio Emission from a Fast Radio Burst in a Star-forming Galaxy , 2020, The Astrophysical Journal.

[11]  M. Lower,et al.  A magnetar parallax , 2020, 2008.06438.

[12]  R. Lynch,et al.  Repeating behaviour of FRB 121102: periodicity, waiting times, and energy distribution , 2020, Monthly Notices of the Royal Astronomical Society.

[13]  P. Beniamini,et al.  What does FRB light-curve variability tell us about the emission mechanism? , 2020, Monthly Notices of the Royal Astronomical Society.

[14]  J. Hessels,et al.  Detection of two bright FRB-like radio bursts from magnetar SGR 1935+2154 during a multi-frequency monitoring campaign , 2020, 2007.05101.

[15]  J. Hessels,et al.  Detection of two bright radio bursts from magnetar SGR 1935 + 2154 , 2020, Nature Astronomy.

[16]  D. Sob'yanin,et al.  Periodic fast radio bursts from forcedly precessing neutron stars, anomalous torque, and internal magnetic field for FRB 180916.J0158+65 and FRB 121102 , 2020, 2007.01616.

[17]  S. Popov Origin of Sources of Repeating Fast Radio Bursts with Periodicity in Close Binary Systems , 2020, Research Notes of the AAS.

[18]  Xianfei Zhang,et al.  What binary systems are the most likely sources for periodically repeating FRBs? , 2020, 2006.10328.

[19]  Jaime Fern'andez del R'io,et al.  Array programming with NumPy , 2020, Nature.

[20]  J. Prochaska,et al.  Dissecting the Local Environment of FRB 190608 in the Spiral Arm of its Host Galaxy , 2020, The Astrophysical Journal.

[21]  R. Ekers,et al.  High time resolution and polarization properties of ASKAP-localized fast radio bursts , 2020, 2005.13162.

[22]  J. Prochaska,et al.  The Host Galaxies and Progenitors of Fast Radio Bursts Localized with the Australian Square Kilometre Array Pathfinder , 2020, 2020 XXXIIIrd General Assembly and Scientific Symposium of the International Union of Radio Science.

[23]  L. A. Antonelli,et al.  An X-ray burst from a magnetar enlightening the mechanism of fast radio bursts , 2020, Nature Astronomy.

[24]  S. Golenetskii,et al.  A peculiar hard X-ray counterpart of a Galactic fast radio burst , 2020, Nature Astronomy.

[25]  Y. J. Yang,et al.  HXMT identification of a non-thermal X-ray burst from SGR J1935+2154 and with FRB 200428 , 2020, Nature Astronomy.

[26]  G. Hallinan,et al.  A fast radio burst associated with a Galactic magnetar , 2020, Nature.

[27]  Kendrick M. Smith,et al.  A bright millisecond-duration radio burst from a Galactic magnetar , 2020, Nature.

[28]  Wenbin Lu,et al.  A unified picture of Galactic and cosmological fast radio bursts , 2020, 2005.06736.

[29]  L. Natalucci,et al.  INTEGRAL Discovery of a Burst with Associated Radio Emission from the Magnetar SGR 1935+2154 , 2020, The Astrophysical Journal.

[30]  J. Prochaska,et al.  A census of baryons in the Universe from localized fast radio bursts , 2020, Nature.

[31]  Kendrick M. Smith,et al.  Simultaneous X-Ray and Radio Observations of the Repeating Fast Radio Burst FRB ∼ 180916.J0158+65 , 2020, The Astrophysical Journal.

[32]  G. Naldi,et al.  The Lowest-frequency Fast Radio Bursts: Sardinia Radio Telescope Detection of the Periodic FRB 180916 at 328 MHz , 2020, The Astrophysical Journal.

[33]  B. Metzger,et al.  Periodicity in recurrent fast radio bursts and the origin of ultralong period magnetars , 2020, Monthly Notices of the Royal Astronomical Society.

[34]  D. Lorimer,et al.  Possible periodic activity in the repeating FRB 121102 , 2020, 2003.03596.

[35]  K. Ioka,et al.  A Binary Comb Model for Periodic Fast Radio Bursts , 2020, The Astrophysical Journal.

[36]  D. Lai,et al.  Periodic Fast Radio Bursts with Neutron Star Free Precession , 2020, The Astrophysical Journal.

[37]  Y. Levin,et al.  Precessing Flaring Magnetar as a Source of Repeating FRB 180916.J0158+65 , 2020, The Astrophysical Journal.

[38]  Huan Yang,et al.  Orbit-induced Spin Precession as a Possible Origin for Periodicity in Periodically Repeating Fast Radio Bursts , 2020, The Astrophysical Journal.

[39]  M. Lyutikov,et al.  FRB Periodicity: Mild Pulsars in Tight O/B-star Binaries , 2020, The Astrophysical Journal.

[40]  P. Zarka,et al.  Repeating fast radio bursts caused by small bodies orbiting a pulsar or a magnetar , 2020, Astronomy & Astrophysics.

[41]  Kendrick M. Smith,et al.  Periodic activity from a fast radio burst source , 2020, Nature.

[42]  Kendrick M. Smith,et al.  Nine New Repeating Fast Radio Burst Sources from CHIME/FRB , 2020, The Astrophysical Journal.

[43]  Kendrick M. Smith,et al.  A repeating fast radio burst source localized to a nearby spiral galaxy , 2020, Nature.

[44]  J. Prochaska,et al.  The low density and magnetization of a massive galaxy halo exposed by a fast radio burst , 2019, Science.

[45]  Kendrick M. Smith,et al.  CHIME/FRB Discovery of Eight New Repeating Fast Radio Burst Sources , 2019, The Astrophysical Journal.

[46]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[47]  S. Djorgovski,et al.  A fast radio burst localized to a massive galaxy , 2019, Nature.

[48]  J. Prochaska,et al.  A single fast radio burst localized to a massive galaxy at cosmological distance , 2019, Science.

[49]  Kendrick M. Smith,et al.  CHIME/FRB Detection of the Original Repeating Fast Radio Burst Source FRB 121102 , 2019, The Astrophysical Journal.

[50]  Shami Chatterjee,et al.  Fast Radio Bursts: An Extragalactic Enigma , 2019, Annual Review of Astronomy and Astrophysics.

[51]  D. Finkbeiner,et al.  A 3D Dust Map Based on Gaia, Pan-STARRS 1, and 2MASS , 2019, The Astrophysical Journal.

[52]  D. Lorimer,et al.  Fast radio bursts , 2019, The Astronomy and Astrophysics Review.

[53]  M. Halpern,et al.  A second source of repeating fast radio bursts , 2019, Nature.

[54]  R. Lynch,et al.  FRB 121102 Bursts Show Complex Time–Frequency Structure , 2018, The Astrophysical Journal.

[55]  S. Tendulkar,et al.  A living theory catalogue for fast radio bursts , 2018, Physics Reports.

[56]  R. Ekers,et al.  The dispersion–brightness relation for fast radio bursts from a wide-field survey , 2018, Nature.

[57]  B. Metzger,et al.  A Concordance Picture of FRB 121102 as a Flaring Magnetar Embedded in a Magnetized Ion–Electron Wind Nebula , 2018, The Astrophysical Journal.

[58]  D. H. Hughes,et al.  MEGARA, the R=6000-20000 IFU and MOS of GTC , 2018, Astronomical Telescopes + Instrumentation.

[59]  D. H. Hughes,et al.  First scientific observations with MEGARA at GTC , 2018, Astronomical Telescopes + Instrumentation.

[60]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[61]  J. Emilio Enriquez,et al.  Highest Frequency Detection of FRB 121102 at 4–8 GHz Using the Breakthrough Listen Digital Backend at the Green Bank Telescope , 2018, The Astrophysical Journal.

[62]  F. Jankowski,et al.  Erratum: FRB microstructure revealed by the real-time detection of FRB170827 , 2018, Monthly Notices of the Royal Astronomical Society.

[63]  R. Lynch,et al.  An extreme magneto-ionic environment associated with the fast radio burst source FRB 121102 , 2018, Nature.

[64]  Miguel de Val-Borro,et al.  The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package , 2018, The Astronomical Journal.

[65]  H. J. van Langevelde,et al.  FRB 121102 Is Coincident with a Star-forming Region in Its Host Galaxy , 2017, 1705.07698.

[66]  R. Lynch,et al.  Simultaneous X-Ray, Gamma-Ray, and Radio Observations of the Repeating Fast Radio Burst FRB 121102 , 2017, 1705.07824.

[67]  M. Doi,et al.  Hα Intensity Map of the Repeating Fast Radio Burst FRB 121102 Host Galaxy from Subaru/Kyoto 3DII AO-assisted Optical Integral-field Spectroscopy , 2017, 1705.04693.

[68]  A. Beloborodov A Flaring Magnetar in FRB 121102? , 2017, 1702.08644.

[69]  A. Keimpema,et al.  A direct localization of a fast radio burst and its host , 2017, Nature.

[70]  H. J. van Langevelde,et al.  The Repeating Fast Radio Burst FRB 121102 as Seen on Milliarcsecond Angular Scales , 2017, 1701.01099.

[71]  T. Joseph W. Lazio,et al.  The Host Galaxy and Redshift of the Repeating Fast Radio Burst FRB 121102 , 2017, 1701.01100.

[72]  Nrl,et al.  A repeating fast radio burst , 2016, Nature.

[73]  V. Kaspi,et al.  RADIO NONDETECTION OF THE SGR 1806−20 GIANT FLARE AND IMPLICATIONS FOR FAST RADIO BURSTS , 2016, 1602.02188.

[74]  S. Tsygankov,et al.  Propeller effect in action in the ultraluminous accreting magnetar M82 X-2 , 2015, 1507.08288.

[75]  M. Newville,et al.  Lmfit: Non-Linear Least-Square Minimization and Curve-Fitting for Python , 2014 .

[76]  X. Siemens,et al.  UvA-DARE ( Digital Academic Repository ) Fast Radio Burst Discovered in the Arecibo Pulsar ALFA Survey , 2014 .

[77]  V. Kaspi,et al.  THE McGILL MAGNETAR CATALOG , 2013, 1309.4167.

[78]  Guillaume Dubus,et al.  Gamma-ray binaries and related systems , 2013, 1307.7083.

[79]  Prasanth H. Nair,et al.  Astropy: A community Python package for astronomy , 2013, 1307.6212.

[80]  L. Galbany,et al.  The O3N2 and N2 abundance indicators revisited: improved calibrations based on CALIFA and T e-based literature data , 2013, 1307.5316.

[81]  E. Mamajek,et al.  INTRINSIC COLORS, TEMPERATURES, AND BOLOMETRIC CORRECTIONS OF PRE-MAIN-SEQUENCE STARS , 2013, 1307.2657.

[82]  S. Tsygankov,et al.  High-mass X-ray binaries in the Milky Way , 2013, 1505.03651.

[83]  Paul M. Brunet,et al.  The Gaia mission , 2013, 1303.0303.

[84]  S. Zwart,et al.  The Origin of OB Runaway Stars , 2011, Science.

[85]  N. Rea,et al.  A MAGNETAR-LIKE EVENT FROM LS I +61°303 AND ITS NATURE AS A GAMMA-RAY BINARY , 2011, 1109.5008.

[86]  Berkeley,et al.  CLUSTERING BETWEEN HIGH-MASS X-RAY BINARIES AND OB ASSOCIATIONS IN THE MILKY WAY , 2011, 1109.3466.

[87]  P. Barmby,et al.  A NEW CATALOG OF H ii REGIONS IN M31 , 2011, 1108.4044.

[88]  J. Beckman,et al.  PROPERTIES OF THE H ii REGION POPULATIONS OF M51 AND NGC 4449 FROM Hα IMAGES WITH THE ADVANCED CAMERA FOR SURVEYS ON THE HUBBLE SPACE TELESCOPE , 2011 .

[89]  P. Reig Be/X-ray binaries , 2011, 1101.5036.

[90]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[91]  E. Bozzo,et al.  Are There Magnetars in High-Mass X-Ray Binaries? The Case of Supergiant Fast X-Ray Transients , 2008, 0805.1849.

[92]  M. Mclaughlin,et al.  A Bright Millisecond Radio Burst of Extragalactic Origin , 2007, Science.

[93]  H. Zinnecker,et al.  Toward Understanding Massive Star Formation , 2007, 0707.1279.

[94]  G. Worthey,et al.  AN EMPIRICAL UBV RI JHK COLOR–TEMPERATURE CALIBRATION FOR STARS , 2006, astro-ph/0604590.

[95]  D. Lorimer,et al.  A statistical study of 233 pulsar proper motions , 2005, astro-ph/0504584.

[96]  D. Schaerer,et al.  A new calibration of stellar parameters of Galactic O stars , 2005, astro-ph/0503346.

[97]  L. Kewley,et al.  The Hα and Infrared Star Formation Rates for the Nearby Field Galaxy Survey , 2002, astro-ph/0208508.

[98]  R. Treffers,et al.  Fabry-Perot H-alpha Observations of Galactic H II Regions , 1990 .

[99]  Robert I. Jedrzejewski,et al.  CCD surface photometry of elliptical galaxies – I. Observations, reduction and results , 1987 .

[100]  S. P. Littlefair,et al.  THE ASTROPY PROJECT: BUILDING AN INCLUSIVE, OPEN-SCIENCE PROJECT AND STATUS OF THE V2.0 CORE PACKAGE , 2018 .

[101]  D. Finkbeiner,et al.  Measuring Reddening with SDSS Stellar Spectra , 2011 .

[102]  Michael Wegner,et al.  Ground-based and Airborne Instrumentation for Astronomy III , 2010 .

[103]  D. Osterbrock,et al.  Astrophysics of Gaseous Nebulae and Active Galactic Nuclei , 1989 .