Finiteness for self-dual classes in integral variations of Hodge structure
暂无分享,去创建一个
[1] Benjamin Bakker,et al. Definable structures on flat bundles , 2022, Bulletin of the London Mathematical Society.
[2] Thomas W. Grimm. Moduli space holography and the finiteness of flux vacua , 2020, Journal of High Energy Physics.
[3] Jacob Tsimerman,et al. Definability of mixed period maps , 2020, Journal of the European Mathematical Society.
[4] Benjamin Bakker,et al. The global moduli theory of symplectic varieties , 2018, Journal für die reine und angewandte Mathematik (Crelles Journal).
[5] B. Klingler. Tame topology of arithmetic quotients and algebraicity of Hodge loci , 2018, Journal of the American Mathematical Society.
[6] M. Verbitsky. Ergodic complex structures on hyperkahler manifolds: an erratum , 2017, 1708.05802.
[7] M. Orr. Height bounds and the Siegel property , 2016, 1609.01315.
[8] M. Verbitsky. Ergodic complex structures on hyperkähler manifolds , 2013, 1306.1498.
[9] Zhiqin Lu,et al. Gauss–Bonnet–Chern theorem on moduli space , 2009, 0902.3839.
[10] F. Denef. Les Houches Lectures on Constructing String Vacua , 2008, 0803.1194.
[11] B. Acharya,et al. A Finite Landscape , 2006, hep-th/0606212.
[12] Zhiqin Lu,et al. On the Geometry of Moduli Space of Polarized Calabi-Yau manifolds , 2006, math/0603414.
[13] S. Zelditch,et al. Critical points and supersymmetric vacua, II: Asymptotics and extremal metrics , 2004, math/0406089.
[14] F. Denef,et al. Distributions of flux vacua , 2004, hep-th/0404116.
[15] S. Zelditch,et al. Critical Points and Supersymmetric Vacua I , 2004, math/0402326.
[16] M. Douglas,et al. Counting flux vacua , 2003, hep-th/0307049.
[17] M. Douglas,et al. The statistics of string/M theory vacua , 2003, hep-th/0303194.
[18] Dave Witte Morris,et al. Introduction to Arithmetic Groups , 2001, math/0106063.
[19] J. Polchinski,et al. Hierarchies from fluxes in string compactifications , 2001, hep-th/0105097.
[20] A. Wilkie. A theorem of the complement and some new o-minimal structures , 1999 .
[21] E. Witten,et al. CFT's from Calabi–Yau four-folds , 1999, hep-th/9906070.
[22] L. van den Dries,et al. Tame Topology and O-minimal Structures , 1998 .
[23] L. Dries,et al. Geometric categories and o-minimal structures , 1996 .
[24] C. Vafa. Evidence for F theory , 1996, hep-th/9602022.
[25] P. Deligné,et al. On the locus of Hodge classes , 1994, alg-geom/9402009.
[26] Helmut Klingen,et al. Introductory Lectures on Siegel Modular Forms , 1990 .
[27] A. Todorov. The Weil-Petersson geometry of the moduli space ofSU(n≧3) (Calabi-Yau) manifolds I , 1989 .
[28] G. Tian. Smoothness of the Universal Deformation Space of Compact Calabi-Yau Manifolds and Its Peterson-Weil Metric , 1987 .
[29] W. Schmid,et al. DEGENERATION OF HODGE-STRUCTURES , 1986 .
[30] A. Borel,et al. Corners and arithmetic groups , 1973 .
[31] W. Schmid. Variation of hodge structure: The singularities of the period mapping , 1973 .
[32] Harish-Chandra,et al. Arithmetic subgroups of algebraic groups , 1961 .
[33] M. Orr,et al. CORRECTION TO “HEIGHT BOUNDS AND THE SIEGEL PROPERTY” , 2022 .
[34] A. Borel,et al. Compactifications of Locally Symmetric Spaces , 2006 .
[35] S. Zelditch,et al. Communications in Mathematical Physics Critical Points and Supersymmetric Vacua , III : String / M Models , 2006 .
[36] A. Wilkie. Model completeness results for expansions of the ordered field of real numbers by restricted Pfaffian functions and the exponential function , 1996 .
[37] Eckart Viehweg,et al. Quasi-projective moduli for polarized manifolds , 1995, Ergebnisse der Mathematik und ihrer Grenzgebiete.
[38] E. Cattani,et al. DEGENERATING VARIATIONS OF HODGE STRUCTURE , 1989 .
[39] P. Deligne,et al. Equations differentielles à points singuliers reguliers , 1970 .
[40] H. Hironaka. Resolution of Singularities of an Algebraic Variety Over a Field of Characteristic Zero: II , 1964 .