Structure and function of OprD protein in Pseudomonas aeruginosa: from antibiotic resistance to novel therapies.

[1]  J. Karlowsky,et al.  Comparative Review of the Carbapenems , 2012, Drugs.

[2]  R. Leclercq,et al.  In vitro antibacterial activity of ceftobiprole against clinical isolates from French teaching hospitals: proposition of zone diameter breakpoints. , 2011, International journal of antimicrobial agents.

[3]  P. Plésiat,et al.  A Two-Component Regulatory System Interconnects Resistance to Polymyxins, Aminoglycosides, Fluoroquinolones, and β-Lactams in Pseudomonas aeruginosa , 2010, Antimicrobial Agents and Chemotherapy.

[4]  G. Rossolini,et al.  Genetic Context and Biochemical Characterization of the IMP-18 Metallo-β-Lactamase Identified in a Pseudomonas aeruginosa Isolate from the United States , 2010, Antimicrobial Agents and Chemotherapy.

[5]  S. Blondelle,et al.  Structural Features Governing the Activity of Lactoferricin-Derived Peptides That Act in Synergy with Antibiotics against Pseudomonas aeruginosa In Vitro and In Vivo , 2010, Antimicrobial Agents and Chemotherapy.

[6]  S. Mody,et al.  Imipenem resistance of Pseudomonas in pneumonia: a systematic literature review , 2010, BMC pulmonary medicine.

[7]  P. Mariotte,et al.  Nationwide Investigation of Extended-Spectrum β-Lactamases, Metallo-β-Lactamases, and Extended-Spectrum Oxacillinases Produced by Ceftazidime-Resistant Pseudomonas aeruginosa Strains in France , 2010, Antimicrobial Agents and Chemotherapy.

[8]  D. Hospenthal,et al.  Incidence and bacteriology of burn infections at a military burn center. , 2010, Burns : journal of the International Society for Burn Injuries.

[9]  E. Ooi,et al.  Multilocus Sequence Types of Carbapenem-Resistant Pseudomonas aeruginosa in Singapore Carrying Metallo-β-Lactamase Genes, Including the Novel blaIMP-26 Gene , 2010, Journal of Clinical Microbiology.

[10]  C. Tribuddharat,et al.  Detection of outer membrane porin protein, an imipenem influx channel, in Pseudomonas aeruginosa clinical isolates. , 2010, The Southeast Asian journal of tropical medicine and public health.

[11]  Brian Van Scoy,et al.  Impact of Different Carbapenems and Regimens of Administration on Resistance Emergence for Three Isogenic Pseudomonas aeruginosa Strains with Differing Mechanisms of Resistance , 2010, Antimicrobial Agents and Chemotherapy.

[12]  A. Oliver,et al.  Activity of a New Cephalosporin, CXA-101 (FR264205), against β-Lactam-Resistant Pseudomonas aeruginosa Mutants Selected In Vitro and after Antipseudomonal Treatment of Intensive Care Unit Patients , 2010, Antimicrobial Agents and Chemotherapy.

[13]  M. Synnestvedt,et al.  Imipenem Resistance in Pseudomonas aeruginosa Emergence, Epidemiology, and Impact on Clinical and Economic Outcomes , 2010, Infection Control & Hospital Epidemiology.

[14]  L. Armand-Lefèvre,et al.  In vitro antibacterial activity of doripenem against clinical isolates from French teaching hospitals: proposition of zone diameter breakpoints , 2010, European Journal of Clinical Microbiology & Infectious Diseases.

[15]  G. Arlet,et al.  Mechanisms of carbapenem resistance in non-metallo-beta-lactamase-producing clinical isolates of Pseudomonas aeruginosa from a Tunisian hospital. , 2009, Pathologie-biologie.

[16]  D. Livermore,et al.  Activity of cephalosporin CXA-101 (FR264205) against Pseudomonas aeruginosa and Burkholderia cepacia group strains and isolates. , 2009, International journal of antimicrobial agents.

[17]  K. Tanimoto,et al.  Fluoroquinolone Enhances the Mutation Frequency for Meropenem-Selected Carbapenem Resistance in Pseudomonas aeruginosa, but Use of the High-Potency Drug Doripenem Inhibits Mutant Formation , 2008, Antimicrobial Agents and Chemotherapy.

[18]  R. Goering,et al.  Emergence of carbapenem resistance in Pseudomonas aeruginosa isolates from a patient with cystic fibrosis in the absence of carbapenem therapy. , 2008, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[19]  Annelie Strålfors,et al.  Role of outer membrane protein OprD and penicillin-binding proteins in resistance of Pseudomonas aeruginosa to imipenem and meropenem. , 2008, International journal of antimicrobial agents.

[20]  J. Cosín,et al.  Association between exposure to nevirapine and reduced liver fibrosis progression in patients with HIV and hepatitis C virus coinfection. , 2008, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[21]  Bert van den Berg,et al.  Structural insight into OprD substrate specificity , 2007, Nature Structural &Molecular Biology.

[22]  K. Perron,et al.  A Copper-Activated Two-Component System Interacts with Zinc and Imipenem Resistance in Pseudomonas aeruginosa , 2007, Journal of bacteriology.

[23]  Chung-Dar Lu,et al.  Polyamine Effects on Antibiotic Susceptibility in Bacteria , 2007, Antimicrobial Agents and Chemotherapy.

[24]  S. Chevalier,et al.  Sequence diversity of the OprD protein of environmental Pseudomonas strains. , 2007, Environmental microbiology.

[25]  F. Ikeda,et al.  In Vitro and In Vivo Activities of a New Cephalosporin, FR264205, against Pseudomonas aeruginosa , 2006, Antimicrobial Agents and Chemotherapy.

[26]  D. Landman,et al.  Interplay of Efflux System, ampC, and oprD Expression in Carbapenem Resistance of Pseudomonas aeruginosa Clinical Isolates , 2006, Antimicrobial Agents and Chemotherapy.

[27]  D. Wolter,et al.  Levofloxacin/imipenem prevents the emergence of high-level resistance among Pseudomonas aeruginosa strains already lacking susceptibility to one or both drugs. , 2006, The Journal of antimicrobial chemotherapy.

[28]  K. Tanimoto,et al.  Potency of Carbapenems for the Prevention of Carbapenem-Resistant Mutants of Pseudomonas aeruginosa , 2006, The Journal of Antibiotics.

[29]  D. Livermore,et al.  Doripenem versus Pseudomonas aeruginosa In Vitro: Activity against Characterized Isolates, Mutants, and Transconjugants and Resistance Selection Potential , 2004, Antimicrobial Agents and Chemotherapy.

[30]  C. van Delden,et al.  CzcR-CzcS, a Two-component System Involved in Heavy Metal and Carbapenem Resistance in Pseudomonas aeruginosa* , 2004, Journal of Biological Chemistry.

[31]  Nnis System National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2003, issued August 2003. , 2003, American journal of infection control.

[32]  L. Martínez-Martínez,et al.  Zinc Eluted from Siliconized Latex Urinary Catheters Decreases OprD Expression, Causing Carbapenem Resistance in Pseudomonas aeruginosa , 2003, Antimicrobial Agents and Chemotherapy.

[33]  Ronald N. Jones,et al.  Pathogen of occurrence and susceptibility patterns associated with pneumonia in hospitalized patients in North America: results of the SENTRY Antimicrobial Surveillance Study (2000). , 2003, Diagnostic microbiology and infectious disease.

[34]  M. Maekawa,et al.  Effect of basic amino acids on susceptibility to carbapenems in clinical Pseudomonas aeruginosa isolates. , 2003, International journal of medical microbiology : IJMM.

[35]  D. Wolter,et al.  Levofloxacin-imipenem combination prevents the emergence of resistance among clinical isolates of Pseudomonas aeruginosa. , 2002, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[36]  A. Vanderkelen,et al.  Analysis of the Pseudomonas aeruginosa oprD gene from clinical and environmental isolates. , 2002, Environmental microbiology.

[37]  T. Köhler,et al.  C-Terminal Region of Pseudomonas aeruginosa Outer Membrane Porin OprD Modulates Susceptibility to Meropenem , 2001, Antimicrobial Agents and Chemotherapy.

[38]  D. Shin,et al.  Microbiologic aspects of predominant bacteria isolated from the burn patients in Korea. , 2001, Burns : journal of the International Society for Burn Injuries.

[39]  Anjana Ray,et al.  Increased sputum amino acid concentrations and auxotrophy ofPseudomonas aeruginosa in severe cystic fibrosis lung disease , 2000, Thorax.

[40]  R. Hancock,et al.  Role of Putative Loops 2 and 3 in Imipenem Passage through the Specific Porin OprD of Pseudomonas aeruginosa , 2000, Antimicrobial Agents and Chemotherapy.

[41]  A. Oliver,et al.  High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. , 2000, Science.

[42]  T. Köhler,et al.  Characterization of MexT, the Regulator of the MexE-MexF-OprN Multidrug Efflux System of Pseudomonas aeruginosa , 1999, Journal of bacteriology.

[43]  R. Hancock,et al.  Amino Acid-Mediated Induction of the Basic Amino Acid-Specific Outer Membrane Porin OprD from Pseudomonas aeruginosa , 1999, Journal of bacteriology.

[44]  R. Hancock,et al.  Negative Regulation of the Pseudomonas aeruginosa Outer Membrane Porin OprD Selective for Imipenem and Basic Amino Acids , 1999, Antimicrobial Agents and Chemotherapy.

[45]  T. Köhler,et al.  Carbapenem Activities against Pseudomonas aeruginosa: Respective Contributions of OprD and Efflux Systems , 1999, Antimicrobial Agents and Chemotherapy.

[46]  H. Yoneyama,et al.  Identification of the catalytic triad of the protein D2 protease in Pseudomonas aeruginosa. , 1998, Biochemical and biophysical research communications.

[47]  N. Gotoh,et al.  Characterization of MexE–MexF–OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa , 1997, Molecular microbiology.

[48]  T. Nakae,et al.  Protein D2 porin of the Pseudomonas aeruginosa outer membrane bears the protease activity , 1996, FEBS letters.

[49]  T. Pitt,et al.  The high amino-acid content of sputum from cystic fibrosis patients promotes growth of auxotrophic Pseudomonas aeruginosa. , 1996, Journal of medical microbiology.

[50]  F. Baquero,et al.  Carbapenem resistance in Pseudomonas aeruginosa from cystic fibrosis patients. , 1996, The Journal of antimicrobial chemotherapy.

[51]  R. Hancock,et al.  The role of specific surface loop regions in determining the function of the imipenem-specific pore protein OprD of Pseudomonas aeruginosa , 1996, Journal of bacteriology.

[52]  R. Hancock,et al.  Membrane topology and site‐specific mutagenesis of Pseudomonas aeruginosa porin OprD , 1995, Molecular microbiology.

[53]  H. Yoneyama,et al.  Mechanism of efficient elimination of protein D2 in outer membrane of imipenem-resistant Pseudomonas aeruginosa , 1993, Antimicrobial Agents and Chemotherapy.

[54]  H. Nikaido,et al.  Activity of the carbapenem panipenem and role of the OprD (D2) protein in its diffusion through the Pseudomonas aeruginosa outer membrane , 1993, Antimicrobial Agents and Chemotherapy.

[55]  H. Yoneyama,et al.  Nucleotide sequence of the protein D2 gene of Pseudomonas aeruginosa , 1992, Antimicrobial Agents and Chemotherapy.

[56]  R. V. Miller,et al.  Imipenem resistance in pseudomonas aeruginosa PAO: mapping of the OprD2 gene , 1991, Antimicrobial Agents and Chemotherapy.

[57]  N. Masuda,et al.  Increase in susceptibility of Pseudomonas aeruginosa to carbapenem antibiotics in low-amino-acid media , 1991, Antimicrobial Agents and Chemotherapy.

[58]  H. Nikaido,et al.  Protein D2 channel of the Pseudomonas aeruginosa outer membrane has a binding site for basic amino acids and peptides. , 1990, The Journal of biological chemistry.

[59]  H. Nikaido,et al.  Outer membrane protein D2 catalyzes facilitated diffusion of carbapenems and penems through the outer membrane of Pseudomonas aeruginosa , 1990, Antimicrobial Agents and Chemotherapy.

[60]  M. J. Lynch,et al.  Emergence of resistance to imipenem in Pseudomonas aeruginosa , 1987, Antimicrobial Agents and Chemotherapy.

[61]  W. Opferkuch,et al.  Imipenem resistance in Pseudomonas aeruginosa resulting from diminished expression of an outer membrane protein , 1987, Antimicrobial Agents and Chemotherapy.

[62]  J. Quinn,et al.  Emergence of resistance to imipenem during therapy for Pseudomonas aeruginosa infections. , 1986, The Journal of infectious diseases.