Ribosome dynamics: insights from atomic structure modeling into cryo-electron microscopy maps.

Single-particle cryo-electron microscopy (cryo-EM) is the method of choice for studying the dynamics of macromolecular machines both at a phenomenological and, increasingly, at the molecular level, with the advent of high-resolution component X-ray structures and of progressively improving fitting algorithms. Cryo-EM has shed light on the structure of the ribosome during the four steps of translation: initiation, elongation, termination, and recycling. Interpretation of cryo-EM reconstructions of the ribosome in quasi-atomic detail reveals a picture in which the ribosome uses RNA not only to catalyze chemical reactions, but also as a means for signal transduction over large distances.

[1]  Joachim Frank,et al.  The role of tRNA as a molecular spring in decoding, accommodation, and peptidyl transfer , 2005, FEBS letters.

[2]  J. Frank,et al.  Three-dimensional cryoelectron microscopy of ribosomes. , 2000, Methods in enzymology.

[3]  Tirion,et al.  Large Amplitude Elastic Motions in Proteins from a Single-Parameter, Atomic Analysis. , 1996, Physical review letters.

[4]  Michael S. Chapman,et al.  Restrained real-space macromolecular atomic refinement using a new resolution-dependent electron-density function , 1995 .

[5]  J. Mccammon,et al.  Situs: A package for docking crystal structures into low-resolution maps from electron microscopy. , 1999, Journal of structural biology.

[6]  A T Brünger,et al.  Slow-cooling protocols for crystallographic refinement by simulated annealing. , 1990, Acta crystallographica. Section A, Foundations of crystallography.

[7]  Wing-Yiu Choy,et al.  Solution NMR-derived global fold of a monomeric 82-kDa enzyme. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[8]  M. Ehrenberg,et al.  Regulatory Nascent Peptides in the Ribosomal Tunnel , 2002, Cell.

[9]  F. Schluenzen,et al.  Structure of Functionally Activated Small Ribosomal Subunit at 3.3 Å Resolution , 2000, Cell.

[10]  M. S. Chapman,et al.  Fitting of high-resolution structures into electron microscopy reconstruction images. , 2005, Structure.

[11]  J. Lepault,et al.  Electronic Reprint Biological Crystallography on the Fitting of Model Electron Densities into Em Reconstructions: a Reciprocal-space Formulation , 2022 .

[12]  B. Ganem RNA world , 1987, Nature.

[13]  Joachim Frank,et al.  A ratchet-like inter-subunit reorganization of the ribosome during translocation , 2000, Nature.

[14]  J. Ballesta,et al.  Domain movements of elongation factor eEF2 and the eukaryotic 80S ribosome facilitate tRNA translocation , 2004, The EMBO journal.

[15]  H. Saibil,et al.  Molecular chaperones: containers and surfaces for folding, stabilising or unfolding proteins. , 2000, Current opinion in structural biology.

[16]  J. Frank,et al.  Direct Visualization of A-, P-, and E-Site Transfer RNAs in the Escherichia coli Ribosome , 1996, Science.

[17]  P. Chacón,et al.  Multi-resolution contour-based fitting of macromolecular structures. , 2002, Journal of molecular biology.

[18]  N. Cozzarelli,et al.  SV40 Large T Antigen Hexamer Structure Domain Organization and DNA-Induced Conformational Changes , 2002, Current Biology.

[19]  C. Vonrhein,et al.  Structure of the 30S ribosomal subunit , 2000, Nature.

[20]  Joachim Frank,et al.  Locking and Unlocking of Ribosomal Motions , 2003, Cell.

[21]  T. Earnest,et al.  X-ray crystal structures of 70S ribosome functional complexes. , 1999, Science.

[22]  Florence Tama,et al.  Structure of the E. coli protein-conducting channel bound to a translating ribosome , 2005, Nature.

[23]  M. Ehrenberg,et al.  Novel roles for classical factors at the interface between translation termination and initiation. , 1999, Molecular cell.

[24]  T. Pape,et al.  Complete kinetic mechanism of elongation factor Tu‐dependent binding of aminoacyl‐tRNA to the A site of the E.coli ribosome , 1998, The EMBO journal.

[25]  A. Brünger,et al.  Torsion angle dynamics: Reduced variable conformational sampling enhances crystallographic structure refinement , 1994, Proteins.

[26]  B L Trus,et al.  Three-dimensional structure of poliovirus receptor bound to poliovirus. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[27]  J. Dubochet,et al.  Emerging techniques: Cryo-electron microscopy of vitrified biological specimens , 1985 .

[28]  A Leith,et al.  Fast 3D motif search of EM density maps using a locally normalized cross-correlation function. , 2003, Journal of structural biology.

[29]  G. Stöffler,et al.  Localization of ribosomal proteins on the surface of ribosomal subunits from Escherichia coli using immunoelectron microscopy. , 1988, Methods in enzymology.

[30]  J. Frank,et al.  Three-dimensional reconstruction of the 70S Escherichia coli ribosome in ice: the distribution of ribosomal RNA , 1991, The Journal of cell biology.

[31]  T. Earnest,et al.  Crystal Structure of the Ribosome at 5.5 Å Resolution , 2001, Science.

[32]  J. Holton,et al.  Structures of the Bacterial Ribosome at 3.5 Å Resolution , 2005, Science.

[33]  Jaroslav Koca,et al.  Ribosomal RNA Kink-turn Motif—A Flexible Molecular Hinge , 2004, Journal of biomolecular structure & dynamics.

[34]  R. Brimacombe,et al.  Arrangement of tRNAs in Pre- and Posttranslocational Ribosomes Revealed by Electron Cryomicroscopy , 1997, Cell.

[35]  J. Frank,et al.  Solution Structure of the E. coli 70S Ribosome at 11.5 Å Resolution , 2000, Cell.

[36]  V. Ramakrishnan,et al.  Ribosome Structure and the Mechanism of Translation , 2002, Cell.

[37]  M. Karplus,et al.  Harmonic dynamics of proteins: normal modes and fluctuations in bovine pancreatic trypsin inhibitor. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[38]  M. Ehrenberg,et al.  A Posttermination Ribosomal Complex Is the Guanine Nucleotide Exchange Factor for Peptide Release Factor RF3 , 2001, Cell.

[39]  M. Heel,et al.  Angular reconstitution: a posteriori assignment of projection directions for 3D reconstruction. , 1987 .

[40]  Joachim Frank,et al.  Mechanism for the disassembly of the posttermination complex inferred from cryo-EM studies. , 2005, Molecular cell.

[41]  T. Steitz,et al.  The kink‐turn: a new RNA secondary structure motif , 2001, The EMBO journal.

[42]  J. Dubochet,et al.  Cryo-electron microscopy of viruses , 1984, Nature.

[43]  R. Horne,et al.  A negative staining method for high resolution electron microscopy of viruses. , 1959, Biochimica et biophysica acta.

[44]  Harry F. Noller,et al.  Intermediate states in the movement of transfer RNA in the ribosome , 1989, Nature.

[45]  J. Frank Three-Dimensional Electron Microscopy of Macromolecular Assemblies , 2006 .

[46]  N. Go,et al.  Dynamics of a small globular protein in terms of low-frequency vibrational modes. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[47]  J Frank,et al.  Escherichia coli 70 S ribosome at 15 A resolution by cryo-electron microscopy: localization of fMet-tRNAfMet and fitting of L1 protein. , 1998, Journal of molecular biology.

[48]  R. Brimacombe,et al.  Visualization of elongation factor Tu on the Escherichia coli ribosome , 1997, Nature.

[49]  Yoshikazu Nakamura,et al.  Making sense of mimic in translation termination. , 2003, Trends in biochemical sciences.

[50]  Koreaki Ito,et al.  The Ribosomal Exit Tunnel Functions as a Discriminating Gate , 2002, Cell.

[51]  L. Gold,et al.  Domains of initiator tRNA and initiation codon crucial for initiator tRNA selection by Escherichia coli IF3. , 1990, Genes & development.

[52]  Måns Ehrenberg,et al.  Peptidyl-tRNA Regulates the GTPase Activity of Translation Factors , 2003, Cell.

[53]  M. S. Chapman,et al.  Study of the Structural Dynamics of the E. coli 70S Ribosome Using Real-Space Refinement , 2003, Cell.

[54]  M G Rossmann,et al.  Interaction of the poliovirus receptor with poliovirus. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[55]  N. Volkmann,et al.  Quantitative fitting of atomic models into observed densities derived by electron microscopy. , 1999, Journal of structural biology.

[56]  J. Frank,et al.  A model of protein synthesis based on cryo-electron microscopy of the E. coli ribosome , 1995, Nature.

[57]  M. Rossmann Fitting atomic models into electron-microscopy maps. , 2000, Acta crystallographica. Section D, Biological crystallography.

[58]  B. Böttcher,et al.  Determination of the fold of the core protein of hepatitis B virus by electron cryomicroscopy , 1997, Nature.

[59]  J. Frank How the Ribosome Works , 1998, American Scientist.

[60]  A. Roseman Docking structures of domains into maps from cryo-electron microscopy using local correlation. , 2000, Acta crystallographica. Section D, Biological crystallography.

[61]  Harry F. Noller,et al.  The Path of Messenger RNA through the Ribosome , 2001, Cell.

[62]  F. Tama,et al.  Normal mode based flexible fitting of high-resolution structure into low-resolution experimental data from cryo-EM. , 2004, Journal of structural biology.

[63]  Joachim Frank,et al.  EF-G-dependent GTP hydrolysis induces translocation accompanied by large conformational changes in the 70S ribosome , 1999, Nature Structural Biology.

[64]  H. Noller,et al.  Unusual resistance of peptidyl transferase to protein extraction procedures. , 1992, Science.

[65]  J. Dubochet,et al.  Electron microscopy of frozen water and aqueous solutions , 1982 .

[66]  D. J. De Rosier,et al.  Reconstruction of Three Dimensional Structures from Electron Micrographs , 1968, Nature.

[67]  Scott M Stagg,et al.  Incorporation of aminoacyl-tRNA into the ribosome as seen by cryo-electron microscopy , 2003, Nature Structural Biology.

[68]  M. Heel,et al.  Single-particle electron cryo-microscopy: towards atomic resolution , 2000, Quarterly Reviews of Biophysics.

[69]  F. Tama,et al.  Flexible multi-scale fitting of atomic structures into low-resolution electron density maps with elastic network normal mode analysis. , 2004, Journal of molecular biology.

[70]  H. Wittmann Architecture of prokaryotic ribosomes. , 1983, Annual review of biochemistry.

[71]  N Go,et al.  Refinement of protein dynamic structure: normal mode refinement. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[72]  Brian W. Matthews,et al.  An efficient general-purpose least-squares refinement program for macromolecular structures , 1987 .

[73]  M. S. Chapman,et al.  Real space refinement of acto-myosin structures from sectioned muscle. , 2001, Journal of structural biology.

[74]  Willy Wriggers,et al.  Conformational flexibility of bacterial RNA polymerase , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[75]  J. Šponer,et al.  Hinge-like motions in RNA kink-turns: the role of the second a-minor motif and nominally unpaired bases. , 2005, Biophysical journal.

[76]  P. Adams,et al.  Annealing in crystallography: a powerful optimization tool. , 1999, Progress in biophysics and molecular biology.

[77]  J. Frank,et al.  Dynamic reorganization of the functionally active ribosome explored by normal mode analysis and cryo-electron microscopy , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[78]  U. Kutay,et al.  Transport between the cell nucleus and the cytoplasm. , 1999, Annual review of cell and developmental biology.

[79]  Niels Volkmann,et al.  Docking of atomic models into reconstructions from electron microscopy. , 2003, Methods in enzymology.

[80]  T S Baker,et al.  Low resolution meets high: towards a resolution continuum from cells to atoms. , 1996, Current opinion in structural biology.

[81]  M van Heel,et al.  The 70S Escherichia coli ribosome at 23 A resolution: fitting the ribosomal RNA. , 1995, Structure.

[82]  Bert van den Berg,et al.  X-ray structure of a protein-conducting channel , 2004, Nature.

[83]  Joachim Frank,et al.  THREE DIMENSIONAL RECONSTRUCTION WITH CONTRAST TRANSFER COMPENSATION FROM DEFOCUS SERIES , 1997 .

[84]  J Frank,et al.  Visualization of elongation factor G on the Escherichia coli 70S ribosome: the mechanism of translocation. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[85]  R W Harrison,et al.  Variational calculation of the normal modes of a large macromolecule: methods and some initial results. , 1984, Biopolymers.

[86]  R. Crowther,et al.  Procedures for three-dimensional reconstruction of spherical viruses by Fourier synthesis from electron micrographs. , 1971, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[87]  A T Brünger,et al.  Recent developments for the efficient crystallographic refinement of macromolecular structures. , 1998, Current opinion in structural biology.

[88]  Y. Sanejouand,et al.  Conformational change of proteins arising from normal mode calculations. , 2001, Protein engineering.

[89]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[90]  Frank Schluenzen,et al.  High Resolution Structure of the Large Ribosomal Subunit from a Mesophilic Eubacterium , 2001, Cell.