Munc18-1 in secretion: lonely Munc joins SNARE team and takes control

SNARE proteins and the Sec1/Munc18 (SM) protein, Munc18-1, are essential components of the mammalian secretion machinery. Until recently, quite divergent working models existed for the central but rather isolated role of Munc18-1 in secretion and its relation to the SNAREs. New studies now solve old discrepancies, bring consensus among SM-SNARE interactions and emphasize how closely these proteins work together. Together, SM and SNARE proteins control each step in the exocytotic pathway as a team. Munc18-1 operates as the chief commander of the exocytotic SNARE team, making teamwork more efficient, working with specific team members on specific jobs, reducing promiscuity with members of noncognate teams, and adjusting team efforts as a function of recent history and environmental cues (presynaptic receptor activation).

[1]  J. Gromada,et al.  Cyclin-dependent Kinase 5 Associated with p39 Promotes Munc18-1 Phosphorylation and Ca2+-dependent Exocytosis* , 2004, Journal of Biological Chemistry.

[2]  B. Davletov,et al.  Mechanism of arachidonic acid action on syntaxin–Munc18 , 2007, EMBO reports.

[3]  S. Brenner The genetics of Caenorhabditis elegans. , 1974, Genetics.

[4]  Akira Mizoguchi,et al.  Tomosyn: a Syntaxin-1–Binding Protein that Forms a Novel Complex in the Neurotransmitter Release Process , 1998, Neuron.

[5]  D. Gallwitz,et al.  Sly1 protein bound to Golgi syntaxin Sed5p allows assembly and contributes to specificity of SNARE fusion complexes , 2002, The Journal of cell biology.

[6]  E. Neher,et al.  Differential Control of the Releasable Vesicle Pools by SNAP-25 Splice Variants and SNAP-23 , 2003, Cell.

[7]  Richard H. Scheller,et al.  Three-dimensional structure of the neuronal-Sec1–syntaxin 1a complex , 2000, Nature.

[8]  M. Verhage,et al.  Vesicle trafficking: pleasure and pain from SM genes. , 2003, Trends in cell biology.

[9]  M. Verhage,et al.  Docking of Secretory Vesicles Is Syntaxin Dependent , 2006, PloS one.

[10]  M. Kozlov,et al.  How Synaptotagmin Promotes Membrane Fusion , 2007, Science.

[11]  R. Duncan,et al.  Functionally and Spatially Distinct Modes of munc18-Syntaxin 1 Interaction* , 2007, Journal of Biological Chemistry.

[12]  S. Ryu,et al.  Munc-18-1 Inhibits Phospholipase D Activity by Direct Interaction in an Epidermal Growth Factor-reversible Manner* , 2004, Journal of Biological Chemistry.

[13]  Mica Ohara-Imaizumi,et al.  Imaging analysis reveals mechanistic differences between first- and second-phase insulin exocytosis , 2007, The Journal of cell biology.

[14]  Helmut Grubmüller,et al.  Molecular Anatomy of a Trafficking Organelle , 2006, Cell.

[15]  T. Südhof,et al.  Rab3 Superprimes Synaptic Vesicles for Release: Implications for Short-Term Synaptic Plasticity , 2006, The Journal of Neuroscience.

[16]  Reinhard Jahn,et al.  SNAREs — engines for membrane fusion , 2006, Nature Reviews Molecular Cell Biology.

[17]  Attila Gulyás-Kovács,et al.  Munc18-1: Sequential Interactions with the Fusion Machinery Stimulate Vesicle Docking and Priming , 2007, The Journal of Neuroscience.

[18]  J. Bessereau,et al.  UNC-13 and UNC-10/Rim Localize Synaptic Vesicles to Specific Membrane Domains , 2006, The Journal of Neuroscience.

[19]  R. Burgess,et al.  Members of the synaptobrevin/vesicle-associated membrane protein (VAMP) family in Drosophila are functionally interchangeable in vivo for neurotransmitter release and cell viability , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[20]  T. Weber,et al.  Reconstitution of Ca2+-Regulated Membrane Fusion by Synaptotagmin and SNAREs , 2004, Science.

[21]  R. Schneggenburger,et al.  A Mechanism Intrinsic to the Vesicle Fusion Machinery Determines Fast and Slow Transmitter Release at a Large CNS Synapse , 2007, The Journal of Neuroscience.

[22]  Takeshi Sakaba,et al.  The Coupling between Synaptic Vesicles and Ca2+ Channels Determines Fast Neurotransmitter Release , 2007, Neuron.

[23]  T. Südhof,et al.  How Tlg2p/syntaxin 16 'snares’ Vps45 , 2002, The EMBO journal.

[24]  P. Novick,et al.  Sec1p Binds to Snare Complexes and Concentrates at Sites of Secretion , 1999, The Journal of cell biology.

[25]  R. J. Fisher,et al.  Phosphorylation of Munc18 by Protein Kinase C Regulates the Kinetics of Exocytosis* , 2003, The Journal of Biological Chemistry.

[26]  Alexander Stein,et al.  N- to C-Terminal SNARE Complex Assembly Promotes Rapid Membrane Fusion , 2006, Science.

[27]  B. Davletov,et al.  Arachidonic acid allows SNARE complex formation in the presence of Munc18. , 2005, Chemistry & biology.

[28]  R. Jahn,et al.  The riddle of the Sec1/Munc-18 proteins - new twists added to their interactions with SNAREs. , 2003, Trends in biochemical sciences.

[29]  Erik M Jorgensen,et al.  Defects in synaptic vesicle docking in unc-18 mutants , 2003, Nature Neuroscience.

[30]  Arjen Brussaard,et al.  Munc18-1 expression levels control synapse recovery by regulating readily releasable pool size , 2006, Proceedings of the National Academy of Sciences.

[31]  N. S. Austin,et al.  Synaptic Vesicle Protein 2 Enhances Release Probability at Quiescent Synapses , 2006, The Journal of Neuroscience.

[32]  R. Schneggenburger,et al.  Allosteric modulation of the presynaptic Ca2+ sensor for vesicle fusion , 2005, Nature.

[33]  D. James,et al.  Structure of the Munc18c/Syntaxin4 N-peptide complex defines universal features of the N-peptide binding mode of Sec1/Munc18 proteins , 2007, Proceedings of the National Academy of Sciences.

[34]  M. Verhage,et al.  Munc18-1 phosphorylation by protein kinase C potentiates vesicle pool replenishment in bovine chromaffin cells , 2006, Neuroscience.

[35]  J. Rothman,et al.  Selective Activation of Cognate SNAREpins by Sec1/Munc18 Proteins , 2007, Cell.

[36]  Christian Rosenmund,et al.  Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[37]  T. Südhof,et al.  Munc18-1 binds directly to the neuronal SNARE complex , 2007, Proceedings of the National Academy of Sciences.

[38]  S. Rizzoli,et al.  Homotypic fusion of early endosomes: SNAREs do not determine fusion specificity. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[39]  F. Meunier,et al.  Arachidonic acid potentiates exocytosis and allows neuronal SNARE complex to interact with Munc18a , 2006, Journal of neurochemistry.

[40]  T. Südhof,et al.  SNARE Function Analyzed in Synaptobrevin/VAMP Knockout Mice , 2001, Science.

[41]  T. Südhof,et al.  DOC2 Proteins in Rat Brain: Complementary Distribution and Proposed Function as Vesicular Adapter Proteins in Early Stages of Secretion , 1997, Neuron.

[42]  T. Südhof,et al.  v‐SNAREs control exocytosis of vesicles from priming to fusion , 2005, The EMBO journal.

[43]  Christian Rosenmund,et al.  Definition of the Readily Releasable Pool of Vesicles at Hippocampal Synapses , 1996, Neuron.

[44]  Demet Araç,et al.  Unraveling the mechanisms of synaptotagmin and SNARE function in neurotransmitter release. , 2006, Trends in cell biology.

[45]  Thomas C. Südhof,et al.  Munc18-1 Promotes Large Dense-Core Vesicle Docking , 2001, Neuron.

[46]  Thorsten Lang,et al.  A dual function for Munc‐18 in exocytosis of PC12 cells , 2005, The European journal of neuroscience.

[47]  T. Südhof,et al.  Sly1 binds to Golgi and ER syntaxins via a conserved N-terminal peptide motif. , 2002, Developmental cell.

[48]  Thomas C. Südhof,et al.  Snares and munc18 in synaptic vesicle fusion , 2002, Nature Reviews Neuroscience.

[49]  Thomas C. Südhof,et al.  β Phorbol Ester- and Diacylglycerol-Induced Augmentation of Transmitter Release Is Mediated by Munc13s and Not by PKCs , 2002, Cell.

[50]  M. Verhage,et al.  Interdependence of PKC-Dependent and PKC-Independent Pathways for Presynaptic Plasticity , 2007, Neuron.

[51]  Ute Becherer,et al.  Primed Vesicles Can Be Distinguished from Docked Vesicles by Analyzing Their Mobility , 2007, The Journal of Neuroscience.

[52]  Nils Brose,et al.  Move over protein kinase C, you've got company: alternative cellular effectors of diacylglycerol and phorbol esters , 2002, Journal of Cell Science.

[53]  T. Südhof,et al.  Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin , 1993, Nature.

[54]  Alan Morgan,et al.  Membrane Trafficking: Three Steps to Fusion , 2007, Current Biology.

[55]  P. De Camilli,et al.  rbSec1A and B colocalize with syntaxin 1 and SNAP-25 throughout the axon, but are not in a stable complex with syntaxin , 1995, The Journal of cell biology.

[56]  Kevin M. Collins,et al.  trans-SNARE complex assembly and yeast vacuole membrane fusion , 2007, Proceedings of the National Academy of Sciences.

[57]  T. Tsuboi,et al.  The Slp4-a linker domain controls exocytosis through interaction with Munc18-1.syntaxin-1a complex. , 2006, Molecular biology of the cell.

[58]  M. Verhage,et al.  Dissecting docking and tethering of secretory vesicles at the target membrane , 2006, The EMBO journal.

[59]  W. Weissenhorn,et al.  Structural basis for the Golgi membrane recruitment of Sly1p by Sed5p , 2002, The EMBO journal.

[60]  R. Jahn,et al.  Munc18-Bound Syntaxin Readily Forms SNARE Complexes with Synaptobrevin in Native Plasma Membranes , 2006, PLoS biology.

[61]  W. Antonin,et al.  Mixed and Non-cognate SNARE Complexes , 1999, The Journal of Biological Chemistry.

[62]  T. Südhof,et al.  Vam3p structure reveals conserved and divergent properties of syntaxins , 2001, Nature Structural Biology.

[63]  T. Südhof,et al.  Synaptotagmin I: A major Ca2+ sensor for transmitter release at a central synapse , 1994, Cell.

[64]  T. Südhof,et al.  Synaptic assembly of the brain in the absence of neurotransmitter secretion. , 2000, Science.

[65]  T. Südhof,et al.  Mints, Munc18-interacting Proteins in Synaptic Vesicle Exocytosis* , 1997, The Journal of Biological Chemistry.

[66]  J. Littleton,et al.  Rop, a drosophila homolog of yeast Sec1 and vertebrate n-Sect/Munc-18 proteins, is a negative regulator of neurotransmitter release in vivo , 1994, Neuron.

[67]  Lindsay N. Carpp,et al.  The Sec1p/Munc18 protein Vps45p binds its cognate SNARE proteins via two distinct modes , 2006, The Journal of cell biology.

[68]  R. Schekman,et al.  Secretion and cell-surface growth are blocked in a temperature-sensitive mutant of Saccharomyces cerevisiae , 1979, Proceedings of the National Academy of Sciences.

[69]  Kristina D. Micheva,et al.  Regulation of presynaptic phosphatidylinositol 4,5-biphosphate by neuronal activity , 2001, The Journal of cell biology.

[70]  R. J. Fisher,et al.  Control of fusion pore dynamics during exocytosis by Munc18. , 2001, Science.

[71]  T. Südhof,et al.  Munc18–1 stabilizes syntaxin 1, but is not essential for syntaxin 1 targeting and SNARE complex formation , 2005, Journal of neurochemistry.

[72]  S. Spijker,et al.  Reduced expression of neuropeptide genes in a genome‐wide screen of a secretion‐deficient mouse , 2006, Journal of neurochemistry.