PDE-based Morphology for Matrix Fields: Numerical Solution Schemes

Tensor fields are important in digital imaging and computer vision. Hence there is a demand for morphological operations to perform e.g. shape analysis, segmentation or enhancement procedures. Recently, fundamental morphological concepts have been transferred to the setting of fields of symmetric positive definite matrices, which are symmetric rank two tensors. This has been achieved by a matrix-valued extension of the nonlinear morphological partial differential equations (PDEs) for dilation and erosion known for grey scale images. Having these two basic operations at our disposal, more advanced morphological operators such as top hats or morphological derivatives for matrix fields with symmetric, positive semidefinite matrices can be constructed. The approach realises a proper coupling of the matrix channels rather than treating them independently. However, from the algorithmic side the usual scalar morphological PDEs are transport equations that require special upwind-schemes or novel high-accuracy predictor-corrector approaches for their adequate numerical treatment. In this chapter we propose the non-trivial extension of these schemes to the matrix-valued setting by exploiting the special algebraic structure available for symmetric matrices. Furthermore we compare the performance and juxtapose the results of these novel matrix-valued high-resolution-type (HRT) numerical schemes by considering top hats and morphological derivatives applied to artificial and real world data sets.

[1]  Johan Wiklund,et al.  Multidimensional Orientation Estimation with Applications to Texture Analysis and Optical Flow , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  M. Welk,et al.  Staircasing in semidiscrete stabilised inverse linear diffusion algorithms , 2007 .

[3]  Hans Knutsson,et al.  Signal processing for computer vision , 1994 .

[4]  J. Boris,et al.  Flux-Corrected Transport , 1997 .

[5]  Michael Breuß,et al.  A Shock-Capturing Algorithm for the Differential Equations of Dilation and Erosion , 2006, Journal of Mathematical Imaging and Vision.

[6]  Preprint Nr,et al.  Mathematical Morphology for Tensor Data Induced by the Loewner Ordering in Higher Dimensions , 2005 .

[7]  Joachim Weickert,et al.  Mathematical morphology for matrix fields induced by the Loewner ordering in higher dimensions , 2007, Signal Process..

[8]  Guillermo Sapiro,et al.  Implementing continuous-scale morphology via curve evolution , 1993, Pattern Recognit..

[9]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[10]  G. Matheron Éléments pour une théorie des milieux poreux , 1967 .

[11]  L. Álvarez,et al.  Signal and image restoration using shock filters and anisotropic diffusion , 1994 .

[12]  Jean-Michel Morel,et al.  A Note on Two Classical Enhancement Filters and Their Associated PDE's , 2003, International Journal of Computer Vision.

[13]  Joachim Weickert,et al.  Coherence-Enhancing Shock Filters , 2003, DAGM-Symposium.

[14]  Wiro J. Niessen Geometric partial differential equations and image analysis [Book Reviews] , 2001, IEEE Transactions on Medical Imaging.

[15]  Yehoshua Y. Zeevi,et al.  Regularized Shock Filters and Complex Diffusion , 2002, ECCV.

[16]  Marko Subasic,et al.  Level Set Methods and Fast Marching Methods , 2003 .

[17]  Mohamed Cheriet,et al.  Numerical Schemes of Shock Filter Models for Image Enhancement and Restoration , 2003, Journal of Mathematical Imaging and Vision.

[18]  Luc Florack,et al.  A Generic Approach to the Filtering of Matrix Fields with Singular PDEs , 2007, SSVM.

[19]  Rein van den Boomgaard,et al.  Numerical Solution Schemes for Continuous-Scale Morphology , 1999, Scale-Space.

[20]  J. Roerdink,et al.  Mathematical Morphology and its Applications to Image and Signal Processing , 1998 .

[21]  P. Basser,et al.  Diffusion tensor MR imaging of the human brain. , 1996, Radiology.

[22]  Joachim Weickert,et al.  Mathematical morphology for tensor data induced by the Loewner orderingin higher dimensions , 2005 .

[23]  Kaleem Siddiqi,et al.  Geometric Shock-Capturing ENO Schemes for Subpixel Interpolation, Computation and Curve Evolution , 1997, CVGIP Graph. Model. Image Process..

[24]  Joachim Weickert,et al.  Morphology for matrix data: Ordering versus PDE-based approach , 2007, Image Vis. Comput..

[25]  Kristel Michielsen,et al.  Morphological image analysis , 2000 .

[26]  S. Zalesak Introduction to “Flux-Corrected Transport. I. SHASTA, A Fluid Transport Algorithm That Works” , 1997 .

[27]  L. Rudin,et al.  Feature-oriented image enhancement using shock filters , 1990 .

[28]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[29]  E. Rouy,et al.  A viscosity solutions approach to shape-from-shading , 1992 .

[30]  Marcel J. T. Reinders,et al.  Image sharpening by morphological filtering , 2000, Pattern Recognit..

[31]  Stanley Osher,et al.  Shocks and other nonlinear filtering applied to image processing , 1991, Optics & Photonics.

[32]  Henry P. Kramer,et al.  Iterations of a non-linear transformation for enhancement of digital images , 1975, Pattern Recognit..

[33]  Alexander Barvinok,et al.  A course in convexity , 2002, Graduate studies in mathematics.

[34]  H. Heijmans Morphological image operators , 1994 .

[35]  Lucas J. van Vliet,et al.  A nonlinear laplace operator as edge detector in noisy images , 1989, Comput. Vis. Graph. Image Process..

[36]  Luc Florack,et al.  A generic approach to diffusion filtering of matrix-fields , 2007, Computing.

[37]  Joachim Weickert,et al.  Morphology for Higher-Dimensional Tensor Data Via Loewner Ordering , 2005, ISMM.

[38]  Joachim Weickert,et al.  Scale-Space Theories in Computer Vision , 1999, Lecture Notes in Computer Science.

[39]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[40]  J. Sethian,et al.  Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations , 1988 .

[41]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[42]  Soille Pierre,et al.  Mathematical Morphology and Its Applications to Image and Signal Processing , 2011, Lecture Notes in Computer Science.

[43]  Ioannis Andreadis,et al.  A new approach to morphological color image processing , 2002, Pattern Recognit..

[44]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[45]  Krishnamoorthy Sivakumar,et al.  Morphological Operators for Image Sequences , 1995, Comput. Vis. Image Underst..

[46]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[47]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[48]  A. Ravishankar Rao,et al.  Computing oriented texture fields , 1991, CVGIP Graph. Model. Image Process..

[49]  J. Boris,et al.  Flux-corrected transport. III. Minimal-error FCT algorithms , 1976 .

[50]  G. Matheron Random Sets and Integral Geometry , 1976 .

[51]  S. Osher,et al.  Algorithms Based on Hamilton-Jacobi Formulations , 1988 .

[52]  David L. Book,et al.  Flux-corrected transport II: Generalizations of the method , 1975 .