A Model of Biological Motion Perception from Configural Form Cues

Biological motion perception is the compelling ability of the visual system to perceive complex human movements effortlessly and within a fraction of a second. Recent neuroimaging and neurophysiological studies have revealed that the visual perception of biological motion activates a widespread network of brain areas. The superior temporal sulcus has a crucial role within this network. The roles of other areas are less clear. We present a computational model based on neurally plausible assumptions to elucidate the contributions of motion and form signals to biological motion perception and the computations in the underlying brain network. The model simulates receptive fields for images of the static human body, as found by neuroimaging studies, and temporally integrates their responses by leaky integrator neurons. The model reveals a high correlation to data obtained by neurophysiological, neuroimaging, and psychophysical studies.

[1]  G. Johansson Visual perception of biological motion and a model for its analysis , 1973 .

[2]  James E. Cutting,et al.  A program to generate synthetic walkers as dynamic point-light displays , 1978 .

[3]  Jake K. Aggarwal,et al.  Structure from Motion of Rigid and Jointed Objects , 1981, Artif. Intell..

[4]  N. Mai,et al.  Selective disturbance of movement vision after bilateral brain damage. , 1983, Brain : a journal of neurology.

[5]  S. Sumi Upside-down Presentation of the Johansson Moving Light-Spot Pattern , 1984, Perception.

[6]  Leslie G. Ungerleider,et al.  Multiple visual areas in the caudal superior temporal sulcus of the macaque , 1986, The Journal of comparative neurology.

[7]  Leslie G. Ungerleider,et al.  Cortical connections of visual area MT in the macaque , 1986, The Journal of comparative neurology.

[8]  J E Cutting,et al.  Masking the motions of human gait , 1988, Perception & psychophysics.

[9]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[10]  J. Freyd,et al.  Apparent Motion of the Human Body , 1990 .

[11]  K. Nakayama,et al.  Intact “biological motion” and “structure from motion” perception in a patient with impaired motion mechanisms: A case study , 1990, Visual Neuroscience.

[12]  Leslie G. Ungerleider,et al.  Pathways for motion analysis: Cortical connections of the medial superior temporal and fundus of the superior temporal visual areas in the macaque , 1990, The Journal of comparative neurology.

[13]  G. Mather,et al.  Low-level visual processing of biological motion , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[14]  Hsi-Jian Lee,et al.  Knowledge-guided visual perception of 3-D human gait from a single image sequence , 1992, IEEE Trans. Syst. Man Cybern..

[15]  Bennett I. Bertenthal,et al.  Global Processing of Biological Motions , 1994 .

[16]  D. Perrett,et al.  Responses of Anterior Superior Temporal Polysensory (STPa) Neurons to Biological Motion Stimuli , 1994, Journal of Cognitive Neuroscience.

[17]  N. Logothetis,et al.  Shape representation in the inferior temporal cortex of monkeys , 1995, Current Biology.

[18]  Sheba Heptulla Chatterjee,et al.  Configural processing in the perception of apparent biological motion. , 1996, Journal of experimental psychology. Human perception and performance.

[19]  Alan C. Evans,et al.  Specific Involvement of Human Parietal Systems and the Amygdala in the Perception of Biological Motion , 1996, The Journal of Neuroscience.

[20]  D. Perrett,et al.  Integration of form and motion in the anterior superior temporal polysensory area (STPa) of the macaque monkey. , 1996, Journal of neurophysiology.

[21]  Keiji Tanaka,et al.  Inferotemporal cortex and object vision. , 1996, Annual review of neuroscience.

[22]  P. McLeod,et al.  Preserved and Impaired Detection of Structure From Motion by a 'Motion-blind" Patient , 1996 .

[23]  H B Barlow,et al.  The knowledge used in vision and where it comes from. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[24]  T. Schenk,et al.  Visual motion perception after brain damage: II. Deficits in form-from-motion perception , 1997, Neuropsychologia.

[25]  Maggie Shiffrar,et al.  The perception of biological motion across apertures , 1997, Perception & psychophysics.

[26]  T. Allison,et al.  Temporal Cortex Activation in Humans Viewing Eye and Mouth Movements , 1998, The Journal of Neuroscience.

[27]  David C. Burr,et al.  Seeing biological motion , 1998, Nature.

[28]  A. Cowey,et al.  Blindness to form from motion despite intact static form perception and motion detection , 2000, Neuropsychologia.

[29]  M. Tarr,et al.  FFA: a flexible fusiform area for subordinate-level visual processing automatized by expertise , 2000, Nature Neuroscience.

[30]  M. Pavlova,et al.  Orientation specificity in biological motion perception , 2000, Perception & psychophysics.

[31]  R. Blake,et al.  Brain Areas Involved in Perception of Biological Motion , 2000, Journal of Cognitive Neuroscience.

[32]  P. Sinha,et al.  Functional neuroanatomy of biological motion perception in humans , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[33]  R. Blake,et al.  Brain activity evoked by inverted and imagined biological motion , 2001, Vision Research.

[34]  N. Kanwisher,et al.  The Human Body , 2001 .

[35]  G. Rizzolatti,et al.  Action observation activates premotor and parietal areas in a somatotopic manner: an fMRI study , 2001, The European journal of neuroscience.

[36]  M. Lappe,et al.  Measurement of generalization fields for the recognition of biological motion , 2002, Vision Research.

[37]  J A Beintema,et al.  Perception of biological motion without local image motion , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[38]  A. Cowey,et al.  Visual deficits in a patient with `kaleidoscopic disintegration of the visual world' , 2002, European journal of neurology.

[39]  J. Haxby,et al.  Parallel Visual Motion Processing Streams for Manipulable Objects and Human Movements , 2002, Neuron.

[40]  N. Troje Decomposing biological motion: a framework for analysis and synthesis of human gait patterns. , 2002, Journal of vision.

[41]  R. Blake,et al.  Brain Areas Active during Visual Perception of Biological Motion , 2002, Neuron.

[42]  E. Vatikiotis-Bateson,et al.  Perceiving Biological Motion: Dissociating Visible Speech from Walking , 2003, Journal of Cognitive Neuroscience.

[43]  J. Haxby,et al.  fMRI Responses to Video and Point-Light Displays of Moving Humans and Manipulable Objects , 2003, Journal of Cognitive Neuroscience.

[44]  V. Stone,et al.  The Body-Inversion Effect , 2003, Psychological science.

[45]  Albert Gjedde,et al.  Separate neural pathways for contour and biological-motion cues in motion-defined animal shapes , 2003, NeuroImage.

[46]  Umberto Castiello,et al.  The human temporal lobe integrates facial form and motion: evidence from fMRI and ERP studies , 2003, NeuroImage.

[47]  Patrick Cavanagh,et al.  Perception of biological motion in parietal patients , 2003, Neuropsychologia.

[48]  Nikolaus F Troje,et al.  Reference Frames for Orientation Anisotropies in Face Recognition and Biological-Motion Perception , 2003, Perception.

[49]  T. Shipley The Effect of Object and Event Orientation on Perception of Biological Motion , 2003, Psychological science.

[50]  T. Poggio,et al.  Cognitive neuroscience: Neural mechanisms for the recognition of biological movements , 2003, Nature Reviews Neuroscience.

[51]  Lucia M Vaina,et al.  Perceptual deficits in patients with impaired recognition of biological motion after temporal lobe lesions. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[52]  N. Kanwisher,et al.  The fusiform face area subserves face perception, not generic within-category identification , 2004, Nature Neuroscience.

[53]  D. D. Hoffman,et al.  The interpretation of biological motion , 1982, Biological Cybernetics.

[54]  Jason Lee,et al.  A stochastic model for the detection of coherent motion , 2004, Biological Cybernetics.

[55]  M. Sereno,et al.  Point-Light Biological Motion Perception Activates Human Premotor Cortex , 2004, The Journal of Neuroscience.

[56]  M. Fujita,et al.  Adaptive filter model of the cerebellum , 1982, Biological Cybernetics.

[57]  Antonino Casile,et al.  Critical features for the recognition of biological motion. , 2005, Journal of vision.

[58]  P. Downing,et al.  Selectivity for the human body in the fusiform gyrus. , 2005, Journal of neurophysiology.

[59]  J. Cutting Coding Theory Adapted to Gait Perception , 1981 .

[60]  M. Lappe,et al.  Visual areas involved in the perception of human movement from dynamic form analysis , 2005, Neuroreport.

[61]  D Yves von Cramon,et al.  Motion Class Dependency in Observers' Motor Areas Revealed by Functional Magnetic Resonance Imaging , 2005, The Journal of Neuroscience.

[62]  G. Orban,et al.  Specificity of regions processing biological motion , 2005, The European journal of neuroscience.

[63]  Aina Puce,et al.  Configural Processing of Biological Motion in Human Superior Temporal Sulcus , 2005, The Journal of Neuroscience.

[64]  Á. Pascual-Leone,et al.  Repetitive TMS over posterior STS disrupts perception of biological motion , 2005, Vision Research.

[65]  K. Grill-Spector,et al.  Repetition and the brain: neural models of stimulus-specific effects , 2006, Trends in Cognitive Sciences.

[66]  M. Lappe,et al.  Perception of biological motion from limited-lifetime stimuli , 2006, Perception & psychophysics.

[67]  K. Hiraki,et al.  The relative importance of spatial versus temporal structure in the perception of biological motion: An event-related potential study , 2006, Cognition.