Multi-locus DNA metabarcoding of zooplankton communities and scat reveal trophic interactions of a generalist predator

[1]  R. Constantine,et al.  Future Directions in Research on Bryde's Whales , 2018, Front. Mar. Sci..

[2]  Beth Shapiro,et al.  Minimizing polymerase biases in metabarcoding. , 2018, Molecular ecology resources.

[3]  R. Constantine,et al.  Night-life of Bryde’s whales: ecological implications of resting in a baleen whale , 2018, Behavioral Ecology and Sociobiology.

[4]  B. Deagle,et al.  Counting with DNA in metabarcoding studies: How should we convert sequence reads to dietary data? , 2018, bioRxiv.

[5]  A. Bowie,et al.  Pelagic Iron Recycling in the Southern Ocean: Exploring the Contribution of Marine Animals , 2018, Front. Mar. Sci..

[6]  Evan Bolton,et al.  Database resources of the National Center for Biotechnology Information , 2017, Nucleic Acids Res..

[7]  S. O’Rahilly,et al.  The metabolic syndrome- associated small G protein ARL15 plays a role in adipocyte differentiation and adiponectin secretion , 2017, Scientific Reports.

[8]  T. Akamatsu,et al.  Tread-water feeding of Bryde’s whales , 2017, Current Biology.

[9]  N. Shears,et al.  Half a century of coastal temperature records reveal complex warming trends in western boundary currents , 2017, Scientific Reports.

[10]  A. Friedlaender,et al.  Physical speciation and solubility of iron from baleen whale faecal material , 2017 .

[11]  Kaitlin E. Frasier,et al.  Spatial distribution and dive behavior of Gulf of Mexico Bryde’s whales: potential risk of vessel strikes and fisheries interactions , 2017 .

[12]  M. Bunce,et al.  Assessing the trophic ecology of top predators across a recolonisation frontier using DNA metabarcoding of diets , 2017 .

[13]  Dáithí C. Murray,et al.  DNA metabarcoding for diet analysis and biodiversity: A case study using the endangered Australian sea lion (Neophoca cinerea) , 2017, Ecology and evolution.

[14]  N. Stenseth,et al.  Interaction between top-down and bottom-up control in marine food webs , 2017, Proceedings of the National Academy of Sciences.

[15]  M. Hadfield,et al.  Diet selection at three spatial scales: Implications for conservation of an endangered Hawaiian tree snail , 2017 .

[16]  N. Schizas,et al.  Use of DNA metabarcoding for stomach content analysis in the invasive lionfish Pterois volitans in Puerto Rico , 2016 .

[17]  M. Heithaus,et al.  Megafaunal Impacts on Structure and Function of Ocean Ecosystems , 2016 .

[18]  A. Friedlaender,et al.  Kinematic Diversity in Rorqual Whale Feeding Mechanisms , 2016, Current Biology.

[19]  N. Knowlton,et al.  Censusing marine eukaryotic diversity in the twenty-first century , 2016, Philosophical Transactions of the Royal Society B: Biological Sciences.

[20]  Anthony J Richardson,et al.  Rethinking the Role of Salps in the Ocean. , 2016, Trends in ecology & evolution.

[21]  D. Lodge,et al.  Estimating species richness using environmental DNA , 2016, Ecology and evolution.

[22]  B. Deagle,et al.  Quantitative DNA metabarcoding: improved estimates of species proportional biomass using correction factors derived from control material , 2016, Molecular ecology resources.

[23]  Pierre Taberlet,et al.  From barcodes to genomes: extending the concept of DNA barcoding , 2016, Molecular ecology.

[24]  Yiyuan Li,et al.  Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding , 2015, Molecular ecology resources.

[25]  D. Edwards,et al.  How Should Beta-Diversity Inform Biodiversity Conservation? , 2016, Trends in ecology & evolution.

[26]  Matthew A. Barnes,et al.  The ecology of environmental DNA and implications for conservation genetics , 2016, Conservation Genetics.

[27]  Kristine Bohmann,et al.  Tag jumps illuminated – reducing sequence‐to‐sample misidentifications in metabarcoding studies , 2015, Molecular ecology resources.

[28]  A. Drummond,et al.  Evaluating a multigene environmental DNA approach for biodiversity assessment , 2015, GigaScience.

[29]  E. Hazen,et al.  Blue whales (Balaenoptera musculus) optimize foraging efficiency by balancing oxygen use and energy gain as a function of prey density , 2015, Science Advances.

[30]  P. Taberlet,et al.  Metagenome skimming for phylogenetic community ecology: a new era in biodiversity research , 2015, Molecular ecology.

[31]  David L. Erickson,et al.  DNA metabarcoding illuminates dietary niche partitioning by African large herbivores , 2015, Proceedings of the National Academy of Sciences.

[32]  P. Taberlet,et al.  DNA metabarcoding diet analysis for species with parapatric vs sympatric distribution: a case study on subterranean rodents , 2015, Heredity.

[33]  Nancy Knowlton,et al.  DNA barcoding and metabarcoding of standardized samples reveal patterns of marine benthic diversity , 2015, Proceedings of the National Academy of Sciences.

[34]  L. Nøttestad,et al.  Recent changes in distribution and relative abundance of cetaceans in the Norwegian Sea and their relationship with potential prey , 2015, Front. Ecol. Evol..

[35]  JR Zeldis,et al.  Biogeographic and trophic drivers of mesozooplankton distribution on the northeast continental shelf and in Hauraki Gulf, New Zealand , 2015 .

[36]  Elizabeth L Clare,et al.  Molecular detection of trophic interactions: emerging trends, distinct advantages, significant considerations and conservation applications , 2014, Evolutionary applications.

[37]  Daniel P. Costa,et al.  Whales as marine ecosystem engineers , 2014 .

[38]  B. Deagle,et al.  Improving accuracy of DNA diet estimates using food tissue control materials and an evaluation of proxies for digestion bias , 2014, Molecular ecology.

[39]  P. Taberlet,et al.  DNA metabarcoding multiplexing and validation of data accuracy for diet assessment: application to omnivorous diet , 2014, Molecular ecology resources.

[40]  D. Speirs,et al.  Understanding patterns and processes in models of trophic cascades , 2013, Ecology letters.

[41]  Jiajie Zhang,et al.  PEAR: a fast and accurate Illumina Paired-End reAd mergeR , 2013, Bioinform..

[42]  A. Polanowski,et al.  Adélie Penguin Population Diet Monitoring by Analysis of Food DNA in Scats , 2013, PloS one.

[43]  Robert C. Edgar,et al.  UPARSE: highly accurate OTU sequences from microbial amplicon reads , 2013, Nature Methods.

[44]  V. Ranwez,et al.  A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents , 2013, Frontiers in Zoology.

[45]  Julie A. Jedlicka,et al.  Molecular tools reveal diets of insectivorous birds from predator fecal matter , 2013, Conservation Genetics Resources.

[46]  M. McKenna,et al.  Integrative Approaches to the Study of Baleen Whale Diving Behavior, Feeding Performance, and Foraging Ecology , 2013 .

[47]  Margaret A. McManus,et al.  Bottom-up regulation of a pelagic community through spatial aggregations , 2012, Biology Letters.

[48]  A. Jeffs,et al.  Determining the Diet of Larvae of Western Rock Lobster (Panulirus cygnus) Using High-Throughput DNA Sequencing Techniques , 2012, PloS one.

[49]  D. Post,et al.  Applying stable isotopes to examine food‐web structure: an overview of analytical tools , 2012, Biological reviews of the Cambridge Philosophical Society.

[50]  Hongzhe Li,et al.  Associating microbiome composition with environmental covariates using generalized UniFrac distances , 2012, Bioinform..

[51]  Shane S. Sturrock,et al.  Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data , 2012, Bioinform..

[52]  Eric Coissac,et al.  Bioinformatic challenges for DNA metabarcoding of plants and animals , 2012, Molecular ecology.

[53]  P. Taberlet,et al.  Who is eating what: diet assessment using next generation sequencing , 2012, Molecular ecology.

[54]  P. Taberlet,et al.  Carnivore diet analysis based on next‐generation sequencing: application to the leopard cat (Prionailurus bengalensis) in Pakistan , 2012, Molecular ecology.

[55]  S. Lavery,et al.  PCR enrichment techniques to identify the diet of predators , 2012, Molecular ecology resources.

[56]  P. Legendre,et al.  Chapter 7 – Ecological resemblance , 2012 .

[57]  E. Pakhomov,et al.  Salps in the Lazarev Sea, Southern Ocean: II. Biochemical composition and potential prey value , 2012 .

[58]  M. Gall,et al.  Phytoplankton biomass and primary production responses to physico-chemical forcing across the northeastern New Zealand continental shelf , 2011 .

[59]  D. Lindberg,et al.  What Happened to Gray Whales during the Pleistocene? The Ecological Impact of Sea-Level Change on Benthic Feeding Areas in the North Pacific Ocean , 2011, PloS one.

[60]  E. Johannesen,et al.  Baleen whale distributions and prey associations in the Barents Sea , 2011 .

[61]  R. Knight,et al.  UniFrac: an effective distance metric for microbial community comparison , 2011, The ISME Journal.

[62]  J. Potvin,et al.  Mechanics, hydrodynamics and energetics of blue whale lunge feeding: efficiency dependence on krill density , 2011, Journal of Experimental Biology.

[63]  T. Bruns,et al.  Quantifying microbial communities with 454 pyrosequencing: does read abundance count? , 2010, Molecular ecology.

[64]  James G. Mitchell,et al.  Iron defecation by sperm whales stimulates carbon export in the Southern Ocean , 2010, Proceedings of the Royal Society B: Biological Sciences.

[65]  J. McCarthy,et al.  The Whale Pump: Marine Mammals Enhance Primary Productivity in a Coastal Basin , 2010, PloS one.

[66]  S. Frusher,et al.  Non-lethal method to obtain stomach samples from a large marine predator and the use of DNA analysis to improve dietary information , 2010 .

[67]  S. Lavery,et al.  Using DNA barcoding and phylogenetics to identify Antarctic invertebrate larvae: Lessons from a large scale study. , 2010, Marine genomics.

[68]  A. Chiaradia,et al.  Pyrosequencing faecal DNA to determine diet of little penguins: is what goes in what comes out? , 2010, Conservation Genetics.

[69]  R. Constantine,et al.  Conservation status of New Zealand marine mammals (suborders Cetacea and Pinnipedia), 2009 , 2010 .

[70]  Campbell O. Webb,et al.  Picante: R tools for integrating phylogenies and ecology , 2010, Bioinform..

[71]  William A. Walters,et al.  QIIME allows analysis of high-throughput community sequencing data , 2010, Nature Methods.

[72]  Paramvir S. Dehal,et al.  FastTree 2 – Approximately Maximum-Likelihood Trees for Large Alignments , 2010, PloS one.

[73]  I. Cascão,et al.  Bryde's whale (Balaenoptera brydei) stable associations and dive profiles: New insights into foraging behavior , 2009 .

[74]  B. Deagle,et al.  Analysis of Australian fur seal diet by pyrosequencing prey DNA in faeces , 2009, Molecular ecology.

[75]  Glenn Dunshea,et al.  DNA-Based Diet Analysis for Any Predator , 2009, PloS one.

[76]  S. Bryant,et al.  Database resources of the National Center for Biotechnology Information , 2008, Nucleic acids research.

[77]  S. Jarman,et al.  Blocking primers to enhance PCR amplification of rare sequences in mixed samples – a case study on prey DNA in Antarctic krill stomachs , 2008, Frontiers in Zoology.

[78]  A. Richardson In hot water: zooplankton and climate change , 2008 .

[79]  C. Duarte Impacts of Global Warming on Polar Ecosystems , 2008 .

[80]  L. Jost Partitioning diversity into independent alpha and beta components. , 2007, Ecology.

[81]  Ruth M. Casper,et al.  Detecting prey from DNA in predator scats: a comparison with morphological analysis, using Arctocephalus seals fed a known diet , 2007 .

[82]  Hiroshi Okamura,et al.  Prey selection of common minke (Balaenoptera acutorostrata) and Bryde's (Balaenoptera edeni) whales in the western North Pacific in 2000 and 2001 , 2007 .

[83]  Marti J. Anderson,et al.  Multivariate dispersion as a measure of beta diversity. , 2006, Ecology letters.

[84]  Marti J. Anderson,et al.  Distance‐Based Tests for Homogeneity of Multivariate Dispersions , 2006, Biometrics.

[85]  R. Knight,et al.  UniFrac: a New Phylogenetic Method for Comparing Microbial Communities , 2005, Applied and Environmental Microbiology.

[86]  B. Edvardsen,et al.  Assessing feeding of a carnivorous copepod using species-specific PCR , 2005 .

[87]  J. Gordon,et al.  Seasonal distribution of minke whales Balaenoptera acutorostrata in relation to physiography and prey off the Isle of Mull, Scotland , 2004 .

[88]  E. K. Pikitch,et al.  Ecosystem-Based Fishery Management , 2004, Science.

[89]  J. Zeldis New and remineralised nutrient supply and ecosystem metabolism on the northeastern New Zealand continental shelf , 2004 .

[90]  R. Walters,et al.  Circulation over the northeastern New Zealand continental slope, shelf and adjacent Hauraki Gulf, during spring and summer , 2004 .

[91]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[92]  Gregory D. Schuler,et al.  Database resources of the National Center for Biotechnology Information: update , 2004, Nucleic acids research.

[93]  Marti J. Anderson,et al.  CANONICAL ANALYSIS OF PRINCIPAL COORDINATES: A USEFUL METHOD OF CONSTRAINED ORDINATION FOR ECOLOGY , 2003 .

[94]  P. Best Distribution and population separation of Bryde's whale Balaenoptera edeni off southern Africa , 2001 .

[95]  Hanna,et al.  Principles for Sustainable Governance of the Oceans , 1998, Science.

[96]  D. Pauly,et al.  Diet composition and trophic levels of marine mammals , 1998 .

[97]  P Green,et al.  Base-calling of automated sequencer traces using phred. II. Error probabilities. , 1998, Genome research.

[98]  P. Green,et al.  Base-calling of automated sequencer traces using phred. I. Accuracy assessment. , 1998, Genome research.

[99]  G. Víkingsson Feeding of Fin Whales (Balaenoptera physalus) off Iceland – Diurnal and Seasonal Variation and Possible Rates , 1997 .

[100]  M. Egholm,et al.  Single base pair mutation analysis by PNA directed PCR clamping. , 1993, Nucleic acids research.

[101]  J. T. Curtis,et al.  An Ordination of the Upland Forest Communities of Southern Wisconsin , 1957 .