On the influence of prior information evaluated by fully Bayesian criteria in a personalized whole-brain model of epilepsy spread

Individualized anatomical information has been used as prior knowledge in Bayesian inference paradigms of whole-brain network models. However, the actual sensitivity to such personalized information in priors is still unknown. In this study, we introduce the use of fully Bayesian information criteria and leave-one-out cross-validation technique on the subject-specific information to assess different epileptogenicity hypotheses regarding the location of pathological brain areas based on a priori knowledge from dynamical system properties. The Bayesian Virtual Epileptic Patient (BVEP) model, which relies on the fusion of structural data of individuals, a generative model of epileptiform discharges, and a self-tuning Monte Carlo sampling algorithm, is used to infer the spatial map of epileptogenicity across different brain areas. Our results indicate that measuring the out-of-sample prediction accuracy of the BVEP model with informative priors enables reliable and efficient evaluation of potential hypotheses regarding the degree of epileptogenicity across different brain regions. In contrast, while using uninformative priors, the information criteria are unable to provide strong evidence about the epileptogenicity of brain areas. We also show that the fully Bayesian criteria correctly assess different hypotheses about both structural and functional components of whole-brain models that differ across individuals. The fully Bayesian information-theory based approach used in this study suggests a patient-specific strategy for epileptogenicity hypothesis testing in generative brain network models of epilepsy to improve surgical outcomes.

[1]  Anders M. Dale,et al.  An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest , 2006, NeuroImage.

[2]  Simona Olmi,et al.  Controlling seizure propagation in large-scale brain networks , 2018, bioRxiv.

[3]  M. Betancourt Generalizing the No-U-Turn Sampler to Riemannian Manifolds , 2013, 1304.1920.

[4]  Jiqiang Guo,et al.  Stan: A Probabilistic Programming Language. , 2017, Journal of statistical software.

[5]  Fabrice Wendling,et al.  Defining epileptogenic networks: Contribution of SEEG and signal analysis , 2017, Epilepsia.

[6]  Alan Connelly,et al.  Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution , 2007, NeuroImage.

[7]  Philip Grewe,et al.  Trends in epilepsy surgery: stable surgical numbers despite increasing presurgical volumes , 2016, Journal of Neurology, Neurosurgery & Psychiatry.

[8]  J. Talairach,et al.  Lesion, "irritative" zone and epileptogenic focus. , 1966, Confinia neurologica.

[9]  M. Xiong,et al.  Extended Kalman Filter for Estimation of Parameters in Nonlinear State-Space Models of Biochemical Networks , 2008, PloS one.

[10]  Axel Hutt,et al.  Optimal Model Parameter Estimation from EEG Power Spectrum Features Observed during General Anesthesia , 2018, Neuroinformatics.

[11]  A. Gelman,et al.  Rank-normalization, folding, and localization: An improved R-hat for assessing convergence Rank-Normalization, Folding, and Localization: An Improved (cid:2) R for Assessing Convergence of MCMC An assessing for assessing An improved (cid:2) R for assessing convergence of MCMC , 2020 .

[12]  Clifford M. Hurvich,et al.  Regression and time series model selection in small samples , 1989 .

[13]  Zoubin Ghahramani,et al.  Turing: A Language for Flexible Probabilistic Inference , 2018 .

[14]  Hossein Amiri,et al.  SIMD programming using Intel vector extensions , 2020, J. Parallel Distributed Comput..

[15]  Viktor K. Jirsa,et al.  The Virtual Epileptic Patient: Individualized whole-brain models of epilepsy spread , 2017, NeuroImage.

[16]  Karl J. Friston,et al.  Characterising seizures in anti-NMDA-receptor encephalitis with dynamic causal modelling , 2015, NeuroImage.

[17]  VehtariAki,et al.  Understanding predictive information criteria for Bayesian models , 2014 .

[18]  M. Betancourt,et al.  The Geometric Foundations of Hamiltonian Monte Carlo , 2014, 1410.5110.

[19]  Ravi S. Menon,et al.  Identification of Optimal Structural Connectivity Using Functional Connectivity and Neural Modeling , 2014, The Journal of Neuroscience.

[20]  J. Badier,et al.  Deep brain activities can be detected with magnetoencephalography , 2019, Nature Communications.

[21]  Karl J. Friston,et al.  Dynamic causal modelling of electrographic seizure activity using Bayesian belief updating , 2016, NeuroImage.

[22]  M. Betancourt Identifying the Optimal Integration Time in Hamiltonian Monte Carlo , 2016, 1601.00225.

[23]  Gustavo Deco,et al.  Inferring multi-scale neural mechanisms with brain network modelling , 2017, bioRxiv.

[24]  Karl J. Friston,et al.  Gradient-free MCMC methods for dynamic causal modelling , 2015, NeuroImage.

[25]  Gustavo Deco,et al.  Functional connectivity dynamics: Modeling the switching behavior of the resting state , 2015, NeuroImage.

[26]  Jouko Lampinen,et al.  Bayesian Model Assessment and Comparison Using Cross-Validation Predictive Densities , 2002, Neural Computation.

[27]  Gustavo Deco,et al.  Modeling resting-state functional networks when the cortex falls asleep: local and global changes. , 2014, Cerebral cortex.

[28]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[29]  Aki Vehtari,et al.  Practical Bayesian model evaluation using leave-one-out cross-validation and WAIC , 2015, Statistics and Computing.

[30]  Jukka Corander,et al.  Approximate Bayesian Computation , 2013, PLoS Comput. Biol..

[31]  Viktor K. Jirsa,et al.  How do parcellation size and short-range connectivity affect dynamics in large-scale brain network models? , 2016, NeuroImage.

[32]  Dustin Tran,et al.  Edward: A library for probabilistic modeling, inference, and criticism , 2016, ArXiv.

[33]  Aki Vehtari,et al.  Comparison of Bayesian predictive methods for model selection , 2015, Stat. Comput..

[34]  A. Gelman,et al.  Pareto Smoothed Importance Sampling , 2015, 1507.02646.

[35]  John Salvatier,et al.  Probabilistic programming in Python using PyMC3 , 2016, PeerJ Comput. Sci..

[36]  Adrian E. Raftery,et al.  Bayesian Model Averaging: A Tutorial , 2016 .

[37]  Jeffrey S. Rosenthal,et al.  Optimal Proposal Distributions and Adaptive MCMC , 2011 .

[38]  W. Stacey,et al.  A taxonomy of seizure dynamotypes , 2020, eLife.

[39]  A. Connelly,et al.  Improved probabilistic streamlines tractography by 2 nd order integration over fibre orientation distributions , 2009 .

[40]  Sumio Watanabe,et al.  Asymptotic Equivalence of Bayes Cross Validation and Widely Applicable Information Criterion in Singular Learning Theory , 2010, J. Mach. Learn. Res..

[41]  M. Gabriela M. Gomes,et al.  A Bayesian Framework for Parameter Estimation in Dynamical Models , 2011, PloS one.

[42]  M. Betancourt,et al.  Hamiltonian Monte Carlo for Hierarchical Models , 2013, 1312.0906.

[43]  Michael Betancourt,et al.  Calibrating Model-Based Inferences and Decisions , 2018, 1803.08393.

[44]  S. Geisser,et al.  A Predictive Approach to Model Selection , 1979 .

[45]  Viktor K. Jirsa,et al.  Virtual Brain for neurological disease modeling , 2016 .

[46]  Sarah Feldt Muldoon,et al.  Personalized brain network models for assessing structure–function relationships , 2018, Current Opinion in Neurobiology.

[47]  M. Stone An Asymptotic Equivalence of Choice of Model by Cross‐Validation and Akaike's Criterion , 1977 .

[48]  Viktor K. Jirsa,et al.  The hidden repertoire of brain dynamics and dysfunction , 2019, bioRxiv.

[49]  Noah D. Goodman,et al.  Pyro: Deep Universal Probabilistic Programming , 2018, J. Mach. Learn. Res..

[50]  M. Breakspear,et al.  Differentiation of Alzheimer’s disease based on local and global parameters in personalized Virtual Brain models , 2018, bioRxiv.

[51]  A. Connelly,et al.  Determination of the appropriate b value and number of gradient directions for high‐angular‐resolution diffusion‐weighted imaging , 2013, NMR in biomedicine.

[52]  Viktor Jirsa,et al.  Optimization of surgical intervention outside the epileptogenic zone in the Virtual Epileptic Patient (VEP) , 2019, PLoS Comput. Biol..

[53]  Dorian Krause,et al.  JUWELS: Modular Tier-0/1 Supercomputer at Jülich Supercomputing Centre , 2019, Journal of large-scale research facilities JLSRF.

[54]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[55]  Bruce Fischl,et al.  FreeSurfer , 2012, NeuroImage.

[56]  P. Batchelor,et al.  International Society for Magnetic Resonance in Medicine , 1997 .

[57]  G. Deco,et al.  Emerging concepts for the dynamical organization of resting-state activity in the brain , 2010, Nature Reviews Neuroscience.

[58]  William D. Penny,et al.  Comparing Dynamic Causal Models using AIC, BIC and Free Energy , 2012, NeuroImage.

[59]  Fabrice Wendling,et al.  Brain regions and epileptogenicity influence epileptic interictal spike production and propagation during NREM sleep in comparison with wakefulness , 2018, Epilepsia.

[60]  O. Sporns,et al.  Key role of coupling, delay, and noise in resting brain fluctuations , 2009, Proceedings of the National Academy of Sciences.

[61]  Charles C. Margossian,et al.  A review of automatic differentiation and its efficient implementation , 2018, WIREs Data Mining Knowl. Discov..

[62]  Costas Papadimitriou,et al.  Bayesian uncertainty quantification and propagation in molecular dynamics simulations: a high performance computing framework. , 2012, The Journal of chemical physics.

[63]  D. Balding,et al.  Approximate Bayesian computation in population genetics. , 2002, Genetics.

[64]  John K Kruschke,et al.  Bayesian data analysis. , 2010, Wiley interdisciplinary reviews. Cognitive science.

[65]  Viktor Jirsa,et al.  Dynamical Mechanisms of Interictal Resting-State Functional Connectivity in Epilepsy , 2020, The Journal of Neuroscience.

[66]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[67]  Mustafa Khammash,et al.  Parameter Estimation and Model Selection in Computational Biology , 2010, PLoS Comput. Biol..

[68]  Andrew Gelman,et al.  Handbook of Markov Chain Monte Carlo , 2011 .

[69]  P. Chauvel,et al.  Epileptogenicity of brain structures in human temporal lobe epilepsy: a quantified study from intracerebral EEG. , 2008, Brain : a journal of neurology.

[70]  Andrew Gelman,et al.  General methods for monitoring convergence of iterative simulations , 1998 .

[71]  Aki Vehtari,et al.  Understanding predictive information criteria for Bayesian models , 2013, Statistics and Computing.

[72]  Michael Betancourt,et al.  A Conceptual Introduction to Hamiltonian Monte Carlo , 2017, 1701.02434.

[73]  Karl J. Friston,et al.  Modelling functional integration: a comparison of structural equation and dynamic causal models , 2004, NeuroImage.

[74]  D. Madigan,et al.  Model Selection and Accounting for Model Uncertainty in Graphical Models Using Occam's Window , 1994 .

[75]  S. Duane,et al.  Hybrid Monte Carlo , 1987 .

[76]  Anthony R. McIntosh,et al.  Functional Mechanisms of Recovery after Chronic Stroke: Modeling with the Virtual Brain123 , 2016, eNeuro.

[77]  K. Lehnertz,et al.  Seizure prediction — ready for a new era , 2018, Nature Reviews Neurology.

[78]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[79]  Thomas J Palmeri,et al.  Bayesian inference with Stan: A tutorial on adding custom distributions , 2016, Behavior Research Methods.

[80]  Michael Betancourt,et al.  Diagnosing Suboptimal Cotangent Disintegrations in Hamiltonian Monte Carlo , 2016, 1604.00695.

[81]  H. Akaike A new look at the statistical model identification , 1974 .

[82]  Radford M. Neal MCMC Using Hamiltonian Dynamics , 2011, 1206.1901.

[83]  N. Sugiura Further analysts of the data by akaike' s information criterion and the finite corrections , 1978 .

[84]  Lionel Rigoux,et al.  VBA: A Probabilistic Treatment of Nonlinear Models for Neurobiological and Behavioural Data , 2014, PLoS Comput. Biol..

[85]  J. Zimmermann,et al.  Differentiation of Alzheimer's disease based on local and global parameters in personalized Virtual Brain models , 2018, NeuroImage: Clinical.

[86]  Viktor K. Jirsa,et al.  Predicting the spatiotemporal diversity of seizure propagation and termination in human focal epilepsy , 2017, Nature Communications.

[87]  Jan Hasenauer,et al.  Parallelization and High-Performance Computing Enables Automated Statistical Inference of Multi-scale Models. , 2017, Cell systems.

[88]  Viktor K. Jirsa,et al.  Individual brain structure and modelling predict seizure propagation , 2017, Brain : a journal of neurology.

[89]  Gustavo Deco,et al.  Brain songs framework used for discovering the relevant timescale of the human brain , 2019, Nature Communications.

[90]  Andrew Gelman,et al.  The No-U-turn sampler: adaptively setting path lengths in Hamiltonian Monte Carlo , 2011, J. Mach. Learn. Res..

[91]  Viktor Jirsa,et al.  Individual structural features constrain the mouse functional connectome , 2019, Proceedings of the National Academy of Sciences.

[92]  Antônio Augusto Cançado Trindade Individual , 2019, Encyclopedia of Personality and Individual Differences.

[93]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[94]  W. Stacey,et al.  On the nature of seizure dynamics. , 2014, Brain : a journal of neurology.

[95]  Christophe Bernard,et al.  Permittivity Coupling across Brain Regions Determines Seizure Recruitment in Partial Epilepsy , 2014, The Journal of Neuroscience.

[96]  David R. Anderson,et al.  Multimodel Inference , 2004 .

[97]  Kaspar Anton Schindler,et al.  Estimation of brain network ictogenicity predicts outcome from epilepsy surgery , 2016, Scientific Reports.

[98]  Karl J. Friston,et al.  Comparing dynamic causal models , 2004, NeuroImage.

[99]  Barak A. Pearlmutter,et al.  Automatic differentiation in machine learning: a survey , 2015, J. Mach. Learn. Res..

[100]  Karl J. Friston,et al.  Dynamic causal modeling for EEG and MEG , 2009, Human brain mapping.

[101]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[102]  Viktor K. Jirsa,et al.  Mathematical framework for large-scale brain network modeling in The Virtual Brain , 2015, NeuroImage.

[103]  Viktor K. Jirsa,et al.  An automated pipeline for constructing personalized virtual brains from multimodal neuroimaging data , 2015, NeuroImage.

[104]  Karl J. Friston,et al.  Comparing hemodynamic models with DCM , 2007, NeuroImage.