Gathering Anonymous, Oblivious Robots on a Grid

We consider a swarm of n autonomous mobile robots, distributed on a 2-dimensional grid. A basic task for such a swarm is the gathering process: All robots have to gather at one (not predefined) place. A common local model for extremely simple robots is the following: The robots do not have a common compass, only have a constant viewing radius, are autonomous and indistinguishable, can move at most a constant distance in each step, cannot communicate, are oblivious and do not have flags or states. The only gathering algorithm under this robot model, with known runtime bounds, needs \(\mathcal {O}(n^2)\) rounds and works in the Euclidean plane. The underlying time model for the algorithm is the fully synchronous \(\mathcal {FSYNC}\) model. On the other side, in the case of the 2-dimensional grid, the only known gathering algorithms for the same time and a similar local model additionally require a constant memory, states and “flags” to communicate these states to neighbors in viewing range. They gather in time \(\mathcal {O}(n)\).

[1]  Friedhelm Meyer auf der Heide,et al.  Optimal strategies for maintaining a chain of relays between an explorer and a base camp , 2009, Theor. Comput. Sci..

[2]  Yoshiaki Katayama,et al.  Dynamic Compass Models and Gathering Algorithms for Autonomous Mobile Robots , 2007, SIROCCO.

[3]  Alfredo Navarra,et al.  Gathering of Robots on Anonymous Grids without Multiplicity Detection , 2012, SIROCCO.

[4]  Nicola Santoro,et al.  Distributed Computing by Oblivious Mobile Robots , 2012, Synthesis Lectures on Distributed Computing Theory.

[5]  Giuseppe Prencipe,et al.  Impossibility of gathering by a set of autonomous mobile robots , 2007, Theor. Comput. Sci..

[6]  Nicola Santoro,et al.  Solving the Robots Gathering Problem , 2003, ICALP.

[7]  Friedhelm Meyer auf der Heide,et al.  A local O(n2) gathering algorithm , 2010, SPAA '10.

[8]  Sonia Mart́ınez Practical multiagent rendezvous through modified circumcenter algorithms , 2009, Autom..

[9]  Alfredo Navarra,et al.  Optimal Gathering of Oblivious Robots in Anonymous Graphs , 2013, SIROCCO.

[10]  Friedhelm Meyer auf der Heide,et al.  A tight runtime bound for synchronous gathering of autonomous robots with limited visibility , 2011, SPAA '11.

[11]  Friedhelm Meyer auf der Heide,et al.  Maintaining Communication Between an Explorer and a Base Station , 2006, BICC.

[12]  Friedhelm Meyer auf der Heide,et al.  Asymptotically Optimal Gathering on a Grid , 2016, SPAA.

[13]  Friedhelm Meyer auf der Heide,et al.  Gathering a Closed Chain of Robots on a Grid , 2016, 2016 IEEE International Parallel and Distributed Processing Symposium (IPDPS).

[14]  Reuven Cohen,et al.  Robot Convergence via Center-of-Gravity Algorithms , 2004, SIROCCO.

[15]  Euripides Markou,et al.  Gathering asynchronous oblivious mobile robots in a ring , 2006, Theor. Comput. Sci..

[16]  Dara Moazzami,et al.  A Cellular Automaton Based Algorithm for Mobile Sensor Gathering , 2016 .

[17]  Masafumi Yamashita,et al.  Formation and agreement problems for synchronous mobile robots with limited visibility , 1995, Proceedings of Tenth International Symposium on Intelligent Control.

[18]  Xavier Défago,et al.  The Gathering Problem for Two Oblivious Robots with Unreliable Compasses , 2012, SIAM J. Comput..

[19]  Alfredo Navarra,et al.  Optimal Gathering on Infinite Grids , 2014, SSS.

[20]  Andrzej Pelc,et al.  Deterministic Rendezvous in Graphs , 2003, Algorithmica.