Nonvolatile resistive switching in graphene oxide thin films

Reliable and reproducible resistive switching behaviors were observed in graphene oxide (GO) thin films prepared by the vacuum filtration method. The Cu/GO/Pt structure showed an on/off ratio of about 20, a retention time of more than 104 s, and switching threshold voltages of less than 1 V. The switching effect could be understood by considering the desorption/absorption of oxygen-related groups on the GO sheets as well as the diffusion of the top electrodes. Our experiments indicate that GO is potentially useful for future nonvolatile memory applications.

[1]  W. S. Hummers,et al.  Preparation of Graphitic Oxide , 1958 .

[2]  D. Morgan,et al.  Electrical phenomena in amorphous oxide films , 1970 .

[3]  D. Morgan,et al.  A model for filament growth and switching in amorphous oxide films , 1970 .

[4]  C. Hogarth,et al.  Observations of local defects caused by electrical conduction through thin sandwich structures of AgSiO/BaOAg , 1976 .

[5]  A. Ray,et al.  Recent advances in the polyfilamentary model for electronic conduction in electroformed insulating films , 1990 .

[6]  Charles M. Lieber,et al.  Carbon nanotube-based nonvolatile random access memory for molecular computing , 2000, Science.

[7]  S. Q. Liu,et al.  Electric-pulse-induced reversible resistance change effect in magnetoresistive films , 2000 .

[8]  C. Gerber,et al.  Reproducible switching effect in thin oxide films for memory applications , 2000 .

[9]  R. Kesavamoorthy,et al.  The formation and characterization of silver clusters in zirconia , 2001 .

[10]  T. Hasegawa,et al.  Nanometer-scale switches using copper sulfide , 2003 .

[11]  S. Seo,et al.  Reproducible resistance switching in polycrystalline NiO films , 2004 .

[12]  R. Stanley Williams,et al.  Molecule-Independent Electrical Switching in Pt/Organic Monolayer/Ti Devices , 2004 .

[13]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[14]  R. Symanczyk,et al.  Conductive bridging RAM (CBRAM): an emerging non-volatile memory technology scalable to sub 20nm , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[15]  Byung Joon Choi,et al.  Identification of a determining parameter for resistive switching of TiO2 thin films , 2005 .

[16]  Tetsu Fujii,et al.  Colossal electroresistance effect at metal electrode/La1−xSr1+xMnO4 interfaces , 2006 .

[17]  Rainer Waser,et al.  Resistive switching and data reliability of epitaxial (Ba,Sr)TiO3 thin films , 2006 .

[18]  R. Waser,et al.  Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3 , 2006, Nature materials.

[19]  U-In Chung,et al.  Improvement of resistive memory switching in NiO using IrO2 , 2006 .

[20]  INFLUENCE OF PYROLYTIC TEMPERATURE ON STRUCTURES AND PROPERTIES OF GRAPHITE OXIDE , 2006 .

[21]  K. Kinoshita,et al.  Bias polarity dependent data retention of resistive random access memory consisting of binary transition metal oxide , 2006 .

[22]  A. Bid,et al.  Temperature dependence of the resistance of metallic nanowires of diameter≥15nm: applicability of Bloch-Grüneisen theorem , 2006, cond-mat/0607674.

[23]  Young-soo Park,et al.  Two Series Oxide Resistors Applicable to High Speed and High Density Nonvolatile Memory , 2007 .

[24]  L. Y. Chen,et al.  Reproducible unipolar resistance switching in stoichiometric ZrO2 films , 2007 .

[25]  R. Waser,et al.  Resistive switching in Ag-Ge-Se with extremely low write currents , 2007, 2007 Non-Volatile Memory Technology Symposium.

[26]  R. Waser,et al.  Nanoionics-based resistive switching memories. , 2007, Nature materials.

[27]  Charles M. Lieber,et al.  Nanoelectronics from the bottom up. , 2007, Nature materials.

[28]  S. Long,et al.  Nonvolatile resistive switching memory utilizing gold nanocrystals embedded in zirconium oxide , 2007 .

[29]  A graphene-based electrochemical switch , 2007, 0712.2026.

[30]  Byung Joon Choi,et al.  Anode-interface localized filamentary mechanism in resistive switching of TiO2 thin films , 2007 .

[31]  J. Jameson,et al.  Bipolar resistive switching in polycrystalline TiO2 films , 2007 .

[32]  H. Koinuma,et al.  High‐Throughput Characterization of Metal Electrode Performance for Electric‐Field‐Induced Resistance Switching in Metal/Pr0.7Ca0.3MnO3/Metal Structures , 2007 .

[33]  P. Avouris,et al.  Carbon-based electronics. , 2007, Nature nanotechnology.

[34]  Xinman Chen,et al.  Resistive switching behavior of Pt/Mg0.2Zn0.8O/Pt devices for nonvolatile memory applications , 2008 .

[35]  Wei Lu,et al.  Si/a-Si core/shell nanowires as nonvolatile crossbar switches. , 2008, Nano letters.

[36]  D. Stewart,et al.  The missing memristor found , 2008, Nature.

[37]  James M Tour,et al.  Electronic two-terminal bistable graphitic memories. , 2008, Nature materials.

[38]  Jong Yeog Son,et al.  Direct observation of conducting filaments on resistive switching of NiO thin films , 2008 .

[39]  Jin Pyo Hong,et al.  Al electrode dependent transition to bipolar resistive switching characteristics in pure TiO2 films , 2008 .

[40]  W. Lu,et al.  CMOS compatible nanoscale nonvolatile resistance switching memory. , 2008, Nano letters.

[41]  K. Terabe,et al.  Diffusivity of Cu Ions in Solid Electrolyte and Its Effect on the Performance of Nanometer-Scale Switch , 2008, IEEE Transactions on Electron Devices.

[42]  Carbon-based resistive memory , 2008, 2008 IEEE International Electron Devices Meeting.

[43]  S. Yasuda,et al.  Nonpolar resistance switching of metal/binary-transition-metal oxides/metal sandwiches: Homogeneous/inhomogeneous transition of current distribution , 2007, cond-mat/0702564.

[44]  G. Eda,et al.  Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. , 2008, Nature nanotechnology.

[45]  Frederick T. Chen,et al.  Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications , 2008 .

[46]  Hidenori Takagi,et al.  Resistance Switching and Formation of a Conductive Bridge in Metal/Binary Oxide/Metal Structure for Memory Devices , 2008 .

[47]  H. Dai,et al.  Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. , 2008, Physical review letters.

[48]  Qi Liu,et al.  On the resistive switching mechanisms of Cu/ZrO2:Cu/Pt , 2008 .

[49]  G. I. Meijer,et al.  Who Wins the Nonvolatile Memory Race? , 2008, Science.

[50]  Sergei V. Kalinin,et al.  Electric modulation of conduction in multiferroic Ca-doped BiFeO3 films. , 2009, Nature materials.

[51]  Sungho Kim,et al.  Resistive Switching Characteristics of Sol–Gel Zinc Oxide Films for Flexible Memory Applications , 2009, IEEE Transactions on Electron Devices.

[52]  Rainer Waser,et al.  Abnormal bipolar-like resistance change behavior induced by symmetric electroforming in Pt/TiO2/Pt resistive switching cells , 2009, Nanotechnology.

[53]  W. Yu,et al.  Graphene oxide thin film field effect transistors without reduction , 2009 .

[54]  Franklin Kim,et al.  Langmuir-Blodgett assembly of graphite oxide single layers. , 2009, Journal of the American Chemical Society.

[55]  W. Lu,et al.  High-density Crossbar Arrays Based on a Si Memristive System , 2008 .

[56]  F. Zeng,et al.  Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. , 2009, Nano letters.

[57]  M. Chou,et al.  Structural and electronic properties of oxidized graphene. , 2009, Physical review letters.

[58]  Qi Liu,et al.  Improvement of resistive switching properties in ZrO2- based ReRAM with implanted metal ions , 2009, 2009 Proceedings of the European Solid State Device Research Conference.

[59]  John Silcox,et al.  Atomic and electronic structure of graphene-oxide. , 2009, Nano letters.

[60]  W. Lu,et al.  Programmable Resistance Switching in Nanoscale Two-terminal Devices , 2008 .

[61]  Hagen Klauk,et al.  Carbon‐Based Field‐Effect Transistors for Nanoelectronics , 2009, Advanced materials.

[62]  Qi Liu,et al.  Improvement of Resistive Switching Properties in $ \hbox{ZrO}_{2}$-Based ReRAM With Implanted Ti Ions , 2009, IEEE Electron Device Letters.

[63]  Qi Liu,et al.  Resistive Switching Properties of $\hbox{Au}/ \hbox{ZrO}_{2}/\hbox{Ag}$ Structure for Low-Voltage Nonvolatile Memory Applications , 2010, IEEE Electron Device Letters.

[64]  F. Zhuge,et al.  Nonvolatile resistive switching memory based on amorphous carbon , 2010 .

[65]  Run-Wei Li,et al.  Nonvolatile resistive switching in metal/La-doped BiFeO3/Pt sandwiches , 2010, Nanotechnology.

[66]  Jae Hyuck Jang,et al.  Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. , 2010, Nature nanotechnology.

[67]  Xufeng Zhou,et al.  A scalable, solution-phase processing route to graphene oxide and graphene ultralarge sheets. , 2010, Chemical communications.

[68]  F. Zhuge,et al.  Resistance switching in polycrystalline BiFeO3 thin films , 2010 .