Large-scale semantic mapping and reasoning with heterogeneous modalities

This paper presents a probabilistic framework combining heterogeneous, uncertain, information such as object observations, shape, size, appearance of rooms and human input for semantic mapping. It abstracts multi-modal sensory information and integrates it with conceptual common-sense knowledge in a fully probabilistic fashion. It relies on the concept of spatial properties which make the semantic map more descriptive, and the system more scalable and better adapted for human interaction. A probabilistic graphical model, a chaingraph, is used to represent the conceptual information and perform spatial reasoning. Experimental results from online system tests in a large unstructured office environment highlight the system's ability to infer semantic room categories, predict existence of objects and values of other spatial properties as well as reason about unexplored space.

[1]  Grzegorz Cielniak,et al.  A Sparse Hybrid Map for Vision-Guided Mobile Robots , 2011, ECMR.

[2]  Henrik I. Christensen,et al.  Semantic map partitioning in indoor environments using regional analysis , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[3]  Henrik I. Christensen,et al.  The M-Space Feature Representation for SLAM , 2007, IEEE Transactions on Robotics.

[4]  Cipriano Galindo,et al.  Multi-hierarchical semantic maps for mobile robotics , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[5]  James M. Rehg,et al.  Visual Place Categorization: Problem, dataset, and algorithm , 2009, 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  Pierre Lison,et al.  Self-Understanding and Self-Extension: A Systems and Representational Approach , 2010, IEEE Transactions on Autonomous Mental Development.

[7]  James J. Little,et al.  Automated Spatial-Semantic Modeling with Applications to Place Labeling and Informed Search , 2009, 2009 Canadian Conference on Computer and Robot Vision.

[8]  Patric Jensfelt,et al.  Plan-based Object Search and Exploration using Semantic Spatial Knowledge in the Real World , 2011, ECMR.

[9]  Paul Newman,et al.  Highly scalable appearance-only SLAM - FAB-MAP 2.0 , 2009, Robotics: Science and Systems.

[10]  Benjamin Kuipers,et al.  The Spatial Semantic Hierarchy , 2000, Artif. Intell..

[11]  James J. Little,et al.  Curious George: An attentive semantic robot , 2008, Robotics Auton. Syst..

[12]  Patric Jensfelt,et al.  Approaches to Mobile Robot Localization in Indoor Environments , 2001 .

[13]  Wolfram Burgard,et al.  Conceptual spatial representations for indoor mobile robots , 2008, Robotics Auton. Syst..

[14]  Patric Jensfelt,et al.  Hierarchical Multi-Modal Place Categorization , 2011, ECMR.

[15]  Antonio Torralba,et al.  Context-based vision system for place and object recognition , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[16]  Joris M. Mooij,et al.  libDAI: A Free and Open Source C++ Library for Discrete Approximate Inference in Graphical Models , 2010, J. Mach. Learn. Res..

[17]  S. Lauritzen,et al.  Chain graph models and their causal interpretations , 2002 .

[18]  Ananth Ranganathan,et al.  PLISS: Detecting and Labeling Places Using Online Change-Point Detection , 2010, Robotics: Science and Systems.

[19]  Joachim Hertzberg,et al.  Towards semantic maps for mobile robots , 2008, Robotics Auton. Syst..

[20]  M. Vincze,et al.  BLORT-The Blocks World Robotic Vision Toolbox , 2010 .

[21]  Marc Hanheide,et al.  Exploiting Probabilistic Knowledge under Uncertain Sensing for Efficient Robot Behaviour , 2011, IJCAI.

[22]  Roland Siegwart,et al.  Bayesian space conceptualization and place classification for semantic maps in mobile robotics , 2008, Robotics Auton. Syst..

[23]  Patric Jensfelt,et al.  Representing Spatial Knowledge in Mobile Cognitive Systems , 2010 .

[24]  Barbara Caputo,et al.  Multi-modal Semantic Place Classification , 2010, Int. J. Robotics Res..

[25]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..