Binary m-sequences with three-valued crosscorrelation: A proof of Welch's conjecture

We prove the long-standing conjecture of Welch stating that for odd n=2m+1, the power function x/sup d/ with d=2/sup m/+3 is maximally nonlinear on GF(2/sup n/) or, in other terms, that the crosscorrelation function between a binary maximum-length linear shift register sequence of degree n and a decimation of that sequence by 2/sup m/+3 takes on precisely the three values -1, -1/spl plusmn/2/sup m+1/.

[1]  Serge Vaudenay,et al.  Links Between Differential and Linear Cryptanalysis , 1994, EUROCRYPT.

[2]  Anne Canteaut,et al.  Weight Divisibility of Cyclic Codes, Highly Nonlinear Functions on F2m, and Crosscorrelation of Maximum-Length Sequences , 2000, SIAM J. Discret. Math..

[3]  P. Charpin,et al.  Couples de suites binaires de longueur maximale ayant une corrélation croisée à trois valeurs: conjecture de Welch , 1999 .

[4]  Tor Helleseth,et al.  Some results about the cross-correlation function between two maximal linear sequences , 1976, Discret. Math..

[5]  Hans Dobbertin,et al.  Almost Perfect Nonlinear Power Functions on GF(2n): The Niho Case , 1999, Inf. Comput..

[6]  Solomon W. Golomb Theory of transformation groups of polynomials over GF(2) with applications to linear shift register sequences , 1968, Inf. Sci..

[7]  Hans Dobbertin,et al.  Almost Perfect Nonlinear Power Functions on GF(2n): The Welch Case , 1999, IEEE Trans. Inf. Theory.

[8]  Vera Pless,et al.  Power Moment Identities on Weight Distributions in Error Correcting Codes , 1963, Inf. Control..

[9]  Claude Carlet,et al.  Codes, Bent Functions and Permutations Suitable For DES-like Cryptosystems , 1998, Des. Codes Cryptogr..

[10]  Yoji Niho Multi-Valued Cross-Correlation Functions between Two Maximal Linear Recursive Sequences , 1972 .

[11]  T. Kasami WEIGHT DISTRIBUTION OF BOSE-CHAUDHURI-HOCQUENGHEM CODES. , 1966 .

[12]  Robert J. McEliece,et al.  Weight congruences for p-ary cyclic codes , 1972, Discret. Math..