Enhanced Performance and Stability of Semitransparent Perovskite Solar Cells Using Solution-Processed Thiol-Functionalized Cationic Surfactant as Cathode Buffer Layer

We present a facile and effective method to enhance the performance and stability of perovskite solar cells (PSCs) by the incorporation of solution-processed thiol-functionalized cationic surfactant (11-mercaptoundecyl)trimethylammonium bromide (MUTAB) as cathode buffer layer (CBL). Our results indicate that the thiol function groups on MUTAB tend to react with the incident Ag atoms to form covalent Ag–S bonds, while no reaction is observed in the case of a methyl-functionalized counterpart dodecyltrimethylammonium bromide (DTAB). Importantly, the presence of Ag–S bonding exerts multipositive effects on the interface, including decrease of contact resistance between the active layer and Ag electrode, improvement of ambient and thermal stability, and reduction of the percolation threshold of ultrathin Ag film. With these desired interfacial properties, the opaque device delivers high power conversion efficiency (PCE) up to 16.5%, which is superior to those of the devices with DTAB (7.9%) and state-of-the-a...

[1]  A. Jen,et al.  Interfacial Engineering of Ultrathin Metal Film Transparent Electrode for Flexible Organic Photovoltaic Cells , 2014, Advanced materials.

[2]  Karl Leo,et al.  Improvement of Transparent Metal Top Electrodes for Organic Solar Cells by Introducing a High Surface Energy Seed Layer , 2013 .

[3]  A. Jen,et al.  A Versatile Fluoro‐Containing Low‐Bandgap Polymer for Efficient Semitransparent and Tandem Polymer Solar Cells , 2013 .

[4]  A. Jen,et al.  Toward High‐Performance Semi‐Transparent Polymer Solar Cells: Optimization of Ultra‐Thin Light Absorbing Layer and Transparent Cathode Architecture , 2013 .

[5]  Yongbo Yuan,et al.  Origin and elimination of photocurrent hysteresis by fullerene passivation in CH3NH3PbI3 planar heterojunction solar cells , 2014, Nature Communications.

[6]  C. Brabec,et al.  Interface Engineering of Perovskite Hybrid Solar Cells with Solution-Processed Perylene–Diimide Heterojunctions toward High Performance , 2015 .

[7]  J. Meiss,et al.  Oxide Sandwiched Metal Thin‐Film Electrodes for Long‐Term Stable Organic Solar Cells , 2012 .

[8]  Mohammad Khaja Nazeeruddin,et al.  Organohalide lead perovskites for photovoltaic applications , 2014 .

[9]  Timothy L. Kelly,et al.  Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques , 2013, Nature Photonics.

[10]  Charles T. Campbell,et al.  Ultrathin metal films and particles on oxide surfaces: structural, electronic and chemisorptive properties , 1997 .

[11]  Alex K.-Y. Jen,et al.  Recent advances in solution-processed interfacial materials for efficient and stable polymer solar cells , 2012 .

[12]  T. Wen,et al.  Self-assembled monolayer-modified Ag anode for top-emitting polymer light-emitting diodes , 2006 .

[13]  Hyun Suk Jung,et al.  Perovskite solar cells: from materials to devices. , 2015, Small.

[14]  Ho Won Jang,et al.  Control of the electrical and adhesion properties of metal/organic interfaces with self-assembled monolayers , 2005 .

[15]  Mengmeng Song,et al.  Converting Chemical Energy Into Electricity through a Functionally Cooperating Device with Diving–Surfacing Cycles , 2014, Advanced materials.

[16]  Henk J. Bolink,et al.  Perovskite solar cells employing organic charge-transport layers , 2013, Nature Photonics.

[17]  Alan D. F. Dunbar,et al.  Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition , 2014 .

[18]  C. Brabec,et al.  Improved High-Efficiency Perovskite Planar Heterojunction Solar Cells via Incorporation of a Polyelectrolyte Interlayer , 2014 .

[19]  A. Jen,et al.  Highly Efficient Polymer Tandem Cells and Semitransparent Cells for Solar Energy , 2014 .

[20]  Leone Spiccia,et al.  Ultra-thin high efficiency semitransparent perovskite solar cells , 2015 .

[21]  Yang Yang,et al.  Interface engineering of highly efficient perovskite solar cells , 2014, Science.

[22]  Trystan Watson,et al.  Efficient, Semitransparent Neutral-Colored Solar Cells Based on Microstructured Formamidinium Lead Trihalide Perovskite. , 2015, The journal of physical chemistry letters.

[23]  Alain Goriely,et al.  Neutral color semitransparent microstructured perovskite solar cells. , 2014, ACS nano.

[24]  M. Green,et al.  The emergence of perovskite solar cells , 2014, Nature Photonics.

[25]  S. Noda,et al.  A new insight into the growth mode of metals on TiO2(110). , 2002 .

[26]  K. Wong,et al.  Vacuum-assisted thermal annealing of CH3NH3PbI3 for highly stable and efficient perovskite solar cells. , 2015, ACS nano.

[27]  C. Chang,et al.  High-Performance, Air-Stable, Low-Temperature Processed Semitransparent Perovskite Solar Cells Enabled by Atomic Layer Deposition , 2015 .

[28]  Sandeep Kumar Pathak,et al.  Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells , 2015, Nature Communications.

[29]  Henry J. Snaith,et al.  Efficient planar heterojunction perovskite solar cells by vapour deposition , 2013, Nature.

[30]  Yang Yang,et al.  Energy level alignment of poly(3-hexylthiophene): [6,6]-phenyl C61 butyric acid methyl ester bulk heterojunction , 2009 .

[31]  A. Jen,et al.  Semi-transparent polymer solar cells with 6% PCE, 25% average visible transmittance and a color rendering index close to 100 for power generating window applications , 2012 .

[32]  G. Whitesides,et al.  Self-assembled monolayers of thiolates on metals as a form of nanotechnology. , 2005, Chemical reviews.

[33]  Alex K.-Y. Jen,et al.  Self-assembled monolayer modified ZnO/metal bilayer cathodes for polymer/fullerene bulk-heterojunction solar cells , 2008 .

[34]  Qi Chen,et al.  Low-temperature solution-processed perovskite solar cells with high efficiency and flexibility. , 2014, ACS nano.

[35]  Takahiko Miyazaki,et al.  Energy savings of office buildings by the use of semi-transparent solar cells for windows , 2005 .

[36]  Fan Zuo,et al.  Additive Enhanced Crystallization of Solution‐Processed Perovskite for Highly Efficient Planar‐Heterojunction Solar Cells , 2014, Advanced materials.

[37]  Karen Forberich,et al.  High-performance semitransparent perovskite solar cells with solution-processed silver nanowires as top electrodes. , 2015, Nanoscale.

[38]  Jinsong Huang,et al.  Large fill-factor bilayer iodine perovskite solar cells fabricated by a low-temperature solution-process , 2014 .

[39]  G. D. Scott,et al.  The Structure of Evaporated Metal Films and Their Optical Properties , 1950 .

[40]  Luis Camacho,et al.  High efficiency single-junction semitransparent perovskite solar cells , 2014 .

[41]  Yi Cui,et al.  Semitransparent organic photovoltaic cells with laminated top electrode. , 2010, Nano letters.

[42]  Henry J Snaith,et al.  Efficient organometal trihalide perovskite planar-heterojunction solar cells on flexible polymer substrates , 2013, Nature Communications.