On quantum and relativistic mechanical analogues in mean-field spin models

Conceptual analogies among statistical mechanics and classical or quantum mechanics have often appeared in the literature. For classical two-body mean-field models, such an analogy is based on the identification between the free energy of Curie–Weiss-type magnetic models and the Hamilton–Jacobi action for a one-dimensional mechanical system. Similarly, the partition function plays the role of the wave function in quantum mechanics and satisfies the heat equation that plays, in this context, the role of the Schrödinger equation. We show that this identification can be remarkably extended to include a wider family of magnetic models that are classified by normal forms of suitable real algebraic dispersion curves. In all these cases, the model turns out to be completely solvable as the free energy as well as the order parameter are obtained as solutions of an integrable nonlinear PDE of Hamilton–Jacobi type. We observe that the mechanical analogue of these models can be viewed as the relativistic analogue of the Curie–Weiss model and this helps to clarify the connection between generalized self-averaging in statistical thermodynamics and the semiclassical dynamics of viscous conservation laws.

[1]  J. Brankov,et al.  On model spin Hamiltonians including long-range ferromagnetic interaction , 1974 .

[2]  Giorgio Parisi,et al.  Toward a mean field theory for spin glasses , 1979 .

[3]  G. Parisi A sequence of approximated solutions to the S-K model for spin glasses , 1980 .

[4]  G. Parisi The order parameter for spin glasses: a function on the interval 0-1 , 1980 .

[5]  J. W. Humberston Classical mechanics , 1980, Nature.

[6]  J. Brankov,et al.  On the description of the phase transition in the Husimi-Temperley model , 1983 .

[7]  A. M. Kurbatov,et al.  Some classes of exactly soluble models of problems in quantum statistical mechanics: the method of the approximating Hamiltonian , 1984 .

[8]  E. Gardner Spin glasses with p-spin interactions , 1985 .

[9]  M. Mézard,et al.  Spin Glass Theory and Beyond , 1987 .

[10]  Anders Krogh,et al.  Introduction to the theory of neural computation , 1994, The advanced book program.

[11]  A. M. Ilʹin,et al.  Matching of Asymptotic Expansions of Solutions of Boundary Value Problems , 1992 .

[12]  F. Guerra ABOUT THE OVERLAP DISTRIBUTION IN MEAN FIELD SPIN GLASS MODELS , 1996, 1212.2919.

[13]  R. Albert,et al.  The large-scale organization of metabolic networks , 2000, Nature.

[14]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[15]  F. Guerra,et al.  The Thermodynamic Limit in Mean Field Spin Glass Models , 2002, cond-mat/0204280.

[16]  M. Talagrand,et al.  Spin Glasses: A Challenge for Mathematicians , 2003 .

[17]  F. Guerra Broken Replica Symmetry Bounds in the Mean Field Spin Glass Model , 2002, cond-mat/0205123.

[18]  Joël Wagner,et al.  On the “Mean Field” Interpretation of Burgers' Equation , 2004 .

[19]  Peter Sollich,et al.  Theory of Neural Information Processing Systems , 2005 .

[20]  M. Talagrand The parisi formula , 2006 .

[21]  G. L. Payne,et al.  Relativistic Quantum Mechanics , 2007 .

[22]  A. Barra The Mean Field Ising Model trough Interpolating Techniques , 2007, 0712.1344.

[23]  A. Barra,et al.  Criticality in diluted ferromagnets , 2008, 0804.4503.

[24]  A. Barra,et al.  A mechanical approach to mean field spin models , 2008, 0812.1978.

[25]  F. Guerra,et al.  Mean Field Dilute Ferromagnet: High Temperature and Zero Temperature Behavior , 2008, 0801.4940.

[26]  S. Starr THERMODYNAMIC LIMIT FOR THE MALLOWS MODEL ON Sn , 2009, 0904.0696.

[27]  William E. Schiesser,et al.  Linear and nonlinear waves , 2009, Scholarpedia.

[28]  Matteo Marsili,et al.  Identifying essential genes in Escherichia coli from a metabolic optimization principle , 2009, Proceedings of the National Academy of Sciences.

[29]  A. Barra,et al.  The Replica Symmetric Approximation of the Analogical Neural Network , 2009, 0911.3096.

[30]  A. Barra,et al.  Replica symmetry breaking in mean-field spin glasses through the Hamilton–Jacobi technique , 2010, 1003.5226.

[31]  Franca Fraternali,et al.  Protein Networks Reveal Detection Bias and Species Consistency When Analysed by Information-Theoretic Methods , 2010, PloS one.

[32]  A. Barra,et al.  A Hebbian approach to complex-network generation , 2010, 1009.1343.

[33]  A. Moro,et al.  Thermodynamic phase transitions and shock singularities , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[34]  Dmitry Panchenko,et al.  The Parisi ultrametricity conjecture , 2011, 1112.1003.

[35]  A. Barra,et al.  Equilibrium statistical mechanics of bipartite spin systems , 2010, 1012.1261.

[36]  A. Barra,et al.  A thermodynamic perspective of immune capabilities. , 2011, Journal of theoretical biology.

[37]  A. Barra,et al.  Equilibrium statistical mechanics on correlated random graphs , 2010, 1009.1345.

[38]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[39]  B. Dubrovin,et al.  On the critical behavior in nonlinear evolutionary PDEs with small viscosity , 2012, 1301.7216.

[40]  A. Barra,et al.  Notes on the p-spin glass studied via Hamilton-Jacobi and smooth-cavity techniques , 2011, 1111.4830.

[41]  A. Barra,et al.  How glassy are neural networks? , 2012, 1205.3900.

[42]  A. Barra,et al.  Mean field spin glasses treated with PDE techniques , 2013 .

[43]  A. Arsie,et al.  Integrable viscous conservation laws , 2013, 1301.0950.

[44]  D. Panchenko The Sherrington-Kirkpatrick Model , 2013 .

[45]  A. Barra,et al.  Immune networks: multitasking capabilities near saturation , 2013, 1305.5936.

[46]  Elena Agliari,et al.  Immune networks: multi-tasking capabilities at medium load , 2013, 1302.7259.

[47]  Antonio Auffinger,et al.  Free Energy and Complexity of Spherical Bipartite Models , 2014, 1405.2321.

[48]  P. Lorenzoni,et al.  Integrable multi-phase thermodynamic systems and Tsallis' composition rule , 2013, 1310.6330.

[49]  A. Moro Shock dynamics of phase diagrams , 2013, 1307.7512.

[50]  A. Barra,et al.  Anergy in self-directed B lymphocytes: A statistical mechanics perspective. , 2015, Journal of theoretical biology.

[51]  Wei-Kuo Chen,et al.  The Parisi Formula has a Unique Minimizer , 2014, 1402.5132.

[52]  Ute Dreher,et al.  Statistical Mechanics Rigorous Results , 2016 .