Beating the Rayleigh Limit Using Two-Photon Interference.

Multiparameter estimation theory offers a general framework to explore imaging techniques beyond the Rayleigh limit. While optimal measurements of single parameters characterizing a composite light source are now well understood, simultaneous determination of multiple parameters poses a much greater challenge that in general requires implementation of collective measurements. Here we show, theoretically and experimentally, that Hong-Ou-Mandel interference followed by spatially resolved detection of photons provides precise information on both the separation and the centroid for a pair of point emitters, avoiding trade-offs inherent to single-photon measurements.

[1]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[2]  Abrams,et al.  Quantum interferometric optical lithography: exploiting entanglement to beat the diffraction limit , 1999, Physical review letters.

[3]  M. S. Zubairy,et al.  Quantum optics: Frontmatter , 1997 .

[4]  Christoph Simon,et al.  Far-field linear optical superresolution via heterodyne detection in a higher-order local oscillator mode , 2016, 1606.02662.

[5]  C. Adams,et al.  Contactless nonlinear optics mediated by long-range Rydberg interactions , 2017, Nature Physics.

[6]  S. Kay Fundamentals of statistical signal processing: estimation theory , 1993 .

[7]  T. Pohl,et al.  Giant optical nonlinearities from Rydberg excitons in semiconductor microcavities , 2017, Nature Communications.

[8]  Xue Li,et al.  Multiplexed storage and real-time manipulation based on a multiple degree-of-freedom quantum memory , 2018, Nature Communications.

[9]  U. Fano,et al.  Quantum Theory of Interference Effects in the Mixing of Light from Phase-Independent Sources , 1961 .

[10]  givenName surName,et al.  Interferometry of the intensity fluctuations in light - I. Basic theory: the correlation between photons in coherent beams of radiation , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[11]  Mankei Tsang Subdiffraction incoherent optical imaging via spatial-mode demultiplexing , 2017 .

[12]  Robert W. Boyd,et al.  Quantum lithography: status of the field , 2012, Quantum Inf. Process..

[13]  Thomas Hellman PHIL , 2018, Encantado.

[14]  W. Hager,et al.  and s , 2019, Shallow Water Hydraulics.

[15]  Aephraim M. Steinberg,et al.  Scalable spatial super-resolution using entangled photons , 2013, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[16]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[17]  M D'Angelo,et al.  Two-photon diffraction and quantum lithography. , 2001, Physical review letters.

[18]  Alexey V. Gorshkov,et al.  Attractive photons in a quantum nonlinear medium , 2013, Nature.

[19]  R. Gill,et al.  Optimal full estimation of qubit mixed states , 2005, quant-ph/0510158.

[20]  Stefano Pirandola,et al.  Ultimate Precision Bound of Quantum and Subwavelength Imaging. , 2016, Physical review letters.

[21]  Hugo Ferretti,et al.  Beating Rayleigh's Curse by Imaging Using Phase Information. , 2016, Physical review letters.

[22]  Alexander Ling,et al.  Fault-tolerant and finite-error localization for point emitters within the diffraction limit. , 2016, Optics express.

[23]  R. Nair,et al.  QUANTUM OPTIMALITY OF PHOTON COUNTING FOR TEMPERATURE MEASUREMENT OF THERMAL ASTRONOMICAL SOURCES , 2015, 1504.01846.

[24]  Stephan Dürr,et al.  Optical π phase shift created with a single-photon pulse , 2015, Science Advances.

[25]  J. Rehacek,et al.  Multiparameter quantum metrology of incoherent point sources: Towards realistic superresolution , 2017, 1709.07705.

[26]  M. S. Zubairy,et al.  Quantum lithography beyond the diffraction limit via Rabi oscillations. , 2010, Physical review letters.

[27]  Jaroslav Rehacek,et al.  Achieving the ultimate optical resolution , 2016, EPJ Web of Conferences.

[28]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[29]  Mankei Tsang,et al.  Far-Field Superresolution of Thermal Electromagnetic Sources at the Quantum Limit. , 2016, Physical review letters.

[30]  W. Wasilewski,et al.  Wavevector multiplexed atomic quantum memory via spatially-resolved single-photon detection , 2017, Nature Communications.

[31]  H. Yuen Quantum detection and estimation theory , 1978, Proceedings of the IEEE.

[32]  Mankei Tsang,et al.  Quantum limits to optical point-source localization , 2014, 1411.2954.

[33]  K. Puschmann,et al.  On super-resolution in astronomical imaging , 2005 .

[34]  K. Banaszek,et al.  Hologram of a single photon , 2015, Nature Photonics.

[35]  R. H. Brown,et al.  A Test of a New Type of Stellar Interferometer on Sirius , 1956, Nature.

[36]  W. Wasilewski,et al.  Microchannel plate cross-talk mitigation for spatial autocorrelation measurements , 2018, 1805.04106.

[37]  Sammy Ragy,et al.  Compatibility in multiparameter quantum metrology , 2016, 1608.02634.

[38]  P. Lam,et al.  Dynamical observations of self-stabilizing stationary light , 2016, 1609.08287.

[39]  Mankei Tsang,et al.  Quantum theory of superresolution for two incoherent optical point sources , 2015, 1511.00552.

[40]  W. Moerner Nobel Lecture: Single-molecule spectroscopy, imaging, and photocontrol: Foundations for super-resolution microscopy , 2015 .

[41]  A. Kuzmich,et al.  Quantum memory with strong and controllable Rydberg-level interactions , 2016, Nature Communications.

[42]  M. Tsang Quantum imaging beyond the diffraction limit by optical centroid measurements. , 2009, Physical review letters.

[43]  Marcin Jarzyna,et al.  On superresolution imaging as a multiparameter estimation problem , 2017, 1709.08392.

[44]  Emanuele Distante,et al.  Storing single photons emitted by a quantum memory on a highly excited Rydberg state , 2017, Nature Communications.

[45]  Marco G. Genoni,et al.  Joint estimation of phase and phase diffusion for quantum metrology , 2014, Nature Communications.

[46]  Andrew G. Glen,et al.  APPL , 2001 .

[47]  Konrad Banaszek,et al.  Mode engineering for realistic quantum-enhanced interferometry , 2015, Nature Communications.

[48]  R. H. Brown,et al.  Interferometry of the intensity fluctuations in light. II. An experimental test of the theory for partially coherent light , 1958, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[49]  Zach DeVito,et al.  Opt , 2017 .