Striatal interneurones: chemical, physiological and morphological characterization

[1]  G. Arbuthnott,et al.  Identified cholinergic neurones in the adult rat brain are enriched in GAP-43 mRNA: a double in situ hybridisation study , 1995, Journal of Chemical Neuroanatomy.

[2]  S. Consolo,et al.  Trans‐synaptic Modulation of Striatal ACh Release In Vivo by the Parafascicular Thalamic Nucleus , 1995, The European journal of neuroscience.

[3]  Y. Kawaguchi Physiological subgroups of nonpyramidal cells with specific morphological characteristics in layer II/III of rat frontal cortex , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  B. Flumerfelt,et al.  Colocalization of somatostatin, neuropeptide Y, and NADPH‐diaphorase in the caudate‐putamen of the rat , 1995, The Journal of comparative neurology.

[5]  P. Emson,et al.  Localization of GAT-1 GABA transporter mRNA in rat striatum: cellular coexpression with GAD67 mRNA, GAD67 immunoreactivity, and parvalbumin mRNA , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  Charles J. Wilson,et al.  Surround inhibition among projection neurons is weak or nonexistent in the rat neostriatum. , 1994, Journal of neurophysiology.

[7]  C. Moine,et al.  Delta-opioid receptor gene expression in the mouse forebrain: Localization in cholinergic neurons of the striatum , 1994, Neuroscience.

[8]  B. D. Bennett,et al.  Synaptic input and output of parvalbumin-immunoreactive neurons in the neostriatum of the rat , 1994, Neuroscience.

[9]  Y. Qin,et al.  GABA‐Ergic interneurons of the striatum express the shaw‐like potassium channel KvS3.1 , 1994, Synapse.

[10]  R. Albin,et al.  Localization of ampa-selective excitatory amino acid receptor subunits in identified populations of striatal neurons , 1994, Neuroscience.

[11]  M. Mckinney,et al.  Differential expression of GAP-43 mRNA in adult central cholinergic neuronal populations. , 1994, Brain research. Molecular brain research.

[12]  S. Augood,et al.  Expression of N-methyl-d-aspartate receptor subunit NR1 messenger RNA by identified striatal somatostatin cells , 1994, Neuroscience.

[13]  T. Kaneko,et al.  Substance P receptor-immunoreactive neurons in the rat neostriatum are segregated into somatostatinergic and cholinergic aspiny neurons , 1993, Brain Research.

[14]  Y. Kubota,et al.  Neostriatal GABAergic interneurones contain NOS, calretinin or parvalbumin. , 1993, Neuroreport.

[15]  D. Morilak,et al.  5-HT2 receptor immunoreactivity on cholinergic neurons of the pontomesencephalic tegmentum shown by double immunofluorescence , 1993, Brain Research.

[16]  Y. Kawaguchi,et al.  Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[17]  K. Kendrick,et al.  Effect of substance P on acetylcholine and dopamine release in the rat striatum: a microdialysis study , 1993, Brain Research.

[18]  Y. Kubota,et al.  Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin- and calbindinD28k-immunoreactive neurons in layer V of rat frontal cortex. , 1993, Journal of neurophysiology.

[19]  Y. Kubota,et al.  Spatial distributions of chemically identified intrinsic neurons in relation to patch and matrix compartments of rat neostriatum , 1993, The Journal of comparative neurology.

[20]  M. Barbacid,et al.  High-affinity nerve growth factor receptor (Trk) immunoreactivity is localized in cholinergic neurons of the basal forebrain and striatum in the adult rat brain , 1993, Brain Research.

[21]  B. D. Bennett,et al.  Two populations of calbindin D28k-immunoreactive neurones in the striatum of the rat , 1993, Brain Research.

[22]  B. D. Bennett,et al.  Characterization of calretinin-immunoreactive structures in the striatum of the rat , 1993, Brain Research.

[23]  J. Kiss,et al.  Coexpression of dopamine D2, and substance P (neurokinin-1) receptor messenger RNAs by a subpopulation of cholinergic neurons in the rat striatum , 1993, Neuroscience.

[24]  R. Huganir,et al.  AMPA glutamate receptor subunits are differentially distributed in rat brain , 1993, Neuroscience.

[25]  H. Kita,et al.  GABAergic circuits of the striatum. , 1993, Progress in brain research.

[26]  P. Salin,et al.  Regulation of glutamic acid decarboxylase gene expression in efferent neurons of the basal ganglia. , 1993, Progress in brain research.

[27]  Charles J. Wilson,et al.  The generation of natural firing patterns in neostriatal neurons. , 1993, Progress in brain research.

[28]  D. Surmeier,et al.  D1 and D2 dopamine receptor modulation of sodium and potassium currents in rat neostriatal neurons. , 1993, Progress in brain research.

[29]  S. Vincent,et al.  Neurons that say NO , 1992, Trends in Neurosciences.

[30]  J. Bolam,et al.  Input from the frontal cortex and the parafascicular nucleus to cholinergic interneurons in the dorsal striatum of the rat , 1992, Neuroscience.

[31]  P. Greengard,et al.  Developmental regulation of phosphoprotein gene expression in the caudate-putamen of rat: An in situ hybridization study , 1992, Neuroscience.

[32]  B. Bloch,et al.  Phenotypical characterization of the rat striatal neurons expressing muscarinic receptor genes , 1992, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[33]  K. Baimbridge,et al.  Calcium-binding proteins in the nervous system , 1992, Trends in Neurosciences.

[34]  Y. Kawaguchi,et al.  Large aspiny cells in the matrix of the rat neostriatum in vitro: physiological identification, relation to the compartments and excitatory postsynaptic currents. , 1992, Journal of neurophysiology.

[35]  O. Manzoni,et al.  Nitric oxide-induced blockade of NMDA receptors , 1992, Neuron.

[36]  C. Gerfen The neostriatal mosaic: multiple levels of compartmental organization , 1992, Trends in Neurosciences.

[37]  H. Kita,et al.  Interneurons in the rat striatum: relationships between parvalbumin neurons and cholinergic neurons , 1992, Brain Research.

[38]  A. Nieoullon,et al.  Ultrastructural relationships between choline acetyltransferase- and neuropeptide Y-containing neurons in the rat striatum , 1992, Neuroscience.

[39]  Solomon H. Snyder,et al.  Nitric oxide, a novel neuronal messenger , 1992, Neuron.

[40]  J. Rogers,et al.  Calretinin in rat brain: An immunohistochemical study , 1992, Neuroscience.

[41]  C. Gerfen The neostriatal mosaic: multiple levels of compartmental organization in the basal ganglia. , 1992, Annual review of neuroscience.

[42]  B. Bloch,et al.  Ontogeny of D1 and DARPP-32 gene expression in the rat striatum: an in situ hybridization study. , 1992, Brain research. Molecular brain research.

[43]  M. Chesselet,et al.  Distribution of glutamic acid decarboxylase (Mr 67 000) in the basal ganglia of the rat: an immunohistochemical study with a selective cDNA-generated polyclonal antibody , 1991, Journal of neurocytology.

[44]  Ann M. Graybiel,et al.  Basal ganglia —input, neural activity, and relation to the cortex , 1991, Current Opinion in Neurobiology.

[45]  R. North,et al.  Membrane properties and synaptic responses of rat striatal neurones in vitro. , 1991, The Journal of physiology.

[46]  C. Gerfen Substance P (neurokinin-1) receptor mRNA is selectively expressed in cholinergic neurons in the striatum and basal forebrain , 1991, Brain Research.

[47]  M. Erlander,et al.  Two genes encode distinct glutamate decarboxylases , 1991, Neuron.

[48]  D. Jacobowitz,et al.  Immunocytochemical localization of calretinin in the forebrain of the rat , 1991, The Journal of comparative neurology.

[49]  C. Houser,et al.  Two Forms of the γ‐Aminobutyric Acid Synthetic Enzyme Glutamate Decarboxylase Have Distinct Intraneuronal Distributions and Cofactor Interactions , 1991, Journal of neurochemistry.

[50]  S. Snyder,et al.  Nitric oxide as a neuronal messenger. , 1991, Trends in pharmacological sciences.

[51]  Charles J. Wilson,et al.  Parvalbumin‐containing gabaergic interneurons in the rat neostriatum , 1990, The Journal of comparative neurology.

[52]  S. Haber,et al.  Mechanisms of striatal pattern formation: conservation of mammalian compartmentalization. , 1990, Brain research. Developmental brain research.

[53]  C. Wilson,et al.  Projection subtypes of rat neostriatal matrix cells revealed by intracellular injection of biocytin , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[54]  B. Bloch,et al.  D2 dopamine receptor gene expression by cholinergic neurons in the rat striatum , 1990, Neuroscience Letters.

[55]  A. Reiner,et al.  The patterns of neurotransmitter and neuropeptide co-occurrence among striatal projection neurons: conclusions based on recent findings , 1990, Brain Research Reviews.

[56]  O. Bosler,et al.  Striatal NPY‐Containing Neurons Receive GABAergic Afferents and may also Contain GABA: An Electron Microscopic Study in the Rat , 1990, European Journal of Neuroscience.

[57]  A. Graybiel Neurotransmitters and neuromodulators in the basal ganglia , 1990, Trends in Neurosciences.

[58]  A. D. Smith,et al.  The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones , 1990, Trends in Neurosciences.

[59]  S. T. Kitai,et al.  Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[60]  O. Bosler,et al.  Ultrastructural correlates of functional relationships between nigral dopaminergic or cortical afferent fibers and neuropeptide Y-containing neurons in the rat striatum , 1989, Neuroscience Letters.

[61]  L. Kerkérian,et al.  Ultrastructural features of NPY-containing neurons in the rat striatum , 1989, Brain Research.

[62]  C. Aoki,et al.  Neuropeptide Y-containing neurons in the rat striatum: ultrastructure and cellular relations with tyrosine hydroxylase-containing terminals and with astrocytes , 1988, Brain Research.

[63]  Y. Kubota,et al.  Neuropeptide Y-immunoreactive neurons receive synaptic inputs from dopaminergic axon terminals in the rat neostriatum , 1988, Brain Research.

[64]  H. T. Chang Dopamine-acetylcholine interaction in the rat striatum: A dual-labeling immunocytochemical study , 1988, Brain Research Bulletin.

[65]  P. Stanzione,et al.  Excitatory amino acids in synaptic excitation of rat striatal neurones in vitro. , 1988, The Journal of physiology.

[66]  H. Kita,et al.  Glutamate decarboxylase immunoreactive neurons in rat neostriatum: their morphological types and populations , 1988, Brain Research.

[67]  J. Bolam,et al.  Cholinergic synaptic input to different parts of spiny striatonigral neurons in the rat , 1988, The Journal of comparative neurology.

[68]  Yasuo Kawaguchi,et al.  Fast spiking cells in rat hippocampus (CA1 region) contain the calcium-binding protein parvalbumin , 1987, Brain Research.

[69]  Y. Kubota,et al.  Neostriatal cholinergic neurons receive direct synaptic inputs from dopaminergic axons , 1987, Brain Research.

[70]  E. Cherubini,et al.  An inward calcium current underlying regenerative calcium potentials in rat striatal neurons in vitro enhanced by BAY K 8644 , 1987, Neuroscience.

[71]  D. Landis,et al.  Morphology of striatal neurons containing VIP‐like immunoreactivity , 1987, The Journal of comparative neurology.

[72]  A. D. Smith,et al.  Substance P-Containing terminals in synaptic contact with cholinergic neurons in the neostriatum and basal forebrain: a double immunocytochemical study in the rat , 1986, Brain Research.

[73]  A. Graybiel,et al.  Cholinergic neuropil of the striatum observes striosomal boundaries , 1986, Nature.

[74]  S. Afsharpour,et al.  The glutamate decarboxylase-, leucine enkephalin-, methionine enkephalin-and substance P-immunoreactive neurons in the neostriatum of the rat and cat: Evidence for partial population overlap , 1986, Neuroscience.

[75]  J. E. Vaughn,et al.  Immunocytochemical localization of choline acetyltransferase within the rat neostriatum: A correlated light and electron microscopic study of cholinergic neurons and synapses , 1985, The Journal of comparative neurology.

[76]  J. Wu,et al.  Glutamate decarboxylase‐immunoreactive structures in the rat neostriatum: A correlated light and electron microscopic study including a combination of Golgi impregnation with immunocytochemistry , 1985, The Journal of comparative neurology.

[77]  G. Graveland,et al.  The frequency and distribution of medium-sized neurons with indented nuclei in the primate and rodent neostriatum , 1985, Brain Research.

[78]  T. F. Freund,et al.  Tyrosine hydroxylase-immunoreactive boutons in synaptic contact with identified striatonigral neurons, with particular reference to dendritic spines , 1984, Neuroscience.

[79]  C. Gerfen The neostriatal mosaic: compartmentalization of corticostriatal input and striatonigral output systems , 1984, Nature.

[80]  M. Tohyama,et al.  Bilateral α-melanocyte stimulating hormonergic fiber system from zona incerta to cerebral cortex: combined retrograde axonal transport and immunohistochemical study , 1984, Brain Research.

[81]  W. Oertel,et al.  Immunocytochemical studies of GABAergic neurons in rat basal ganglia and their relations to other neuronal systems , 1984, Neuroscience Letters.

[82]  M. Ariano Distribution of components of the guanosine 3′,5′-phosphate system in rat caudate-putamen , 1983, Neuroscience.

[83]  T. Hökfelt,et al.  NADPH‐diaphorase: A selective histochemical marker for striatal neurons containing both somatostatin‐ and avian pancreatic polypeptide (APP)‐like immunoreactivities , 1983, The Journal of comparative neurology.

[84]  P. Somogyi,et al.  Localization of substance P-like immunoreactivity in neurons and nerve terminals in the neostriatum of the rat: a correlated light and electron microscopic study , 1983, Journal of neurocytology.

[85]  P. Somogyi,et al.  A type of aspiny neuron in the rat neostriatum accumulates [3H]γ‐aminobutyric acid: Combination of golgi‐staining, autoradiography, and electron microscopy , 1983, The Journal of comparative neurology.

[86]  S. T. Kitai,et al.  A Golgi study of rat neostriatal neurons: Light microscopic analysis , 1982, The Journal of comparative neurology.

[87]  A. Matus,et al.  Ultrastructural localization of cyclic GMP and cyclic AMP in rat striatum , 1981, The Journal of cell biology.

[88]  J. E. Vaughn,et al.  The GABA Neurons and their axon terminals in rat corpus striatum as demonstrated by GAD immunocytochemistry , 1979, The Journal of comparative neurology.

[89]  J. Maderdrut A radiometric microassay for glutamic acid decar☐ylase , 1979, Neuroscience.

[90]  G. Shepherd The Synaptic Organization of the Brain , 1979 .

[91]  L. Butcher,et al.  Postnatal development of acetylcholinesterase in the caudate-putamen nucleus and substantia nigra of rats , 1976, Brain Research.

[92]  F. Fonnum,et al.  Origin and distribution of glutamate decarboxylase in substantia nigra of the cat. , 1974, Brain research.

[93]  W. Precht,et al.  Blockage of caudate-evoked inhibition of neurons in the substantia nigra by picrotoxin. , 1971, Brain research.

[94]  W. Precht,et al.  Monosynaptic inhibition of neurons of the substantia nigra by caudato-nigral fibers. , 1971, Brain research.