Multiclass Data Segmentation Using Diffuse Interface Methods on Graphs

We present two graph-based algorithms for multiclass segmentation of high-dimensional data on graphs. The algorithms use a diffuse interface model based on the Ginzburg-Landau functional, related to total variation and graph cuts. A multiclass extension is introduced using the Gibbs simplex, with the functional's double-well potential modified to handle the multiclass case. The first algorithm minimizes the functional using a convex splitting numerical scheme. The second algorithm uses a graph adaptation of the classical numerical Merriman-Bence-Osher (MBO) scheme, which alternates between diffusion and thresholding. We demonstrate the performance of both algorithms experimentally on synthetic data, image labeling, and several benchmark data sets such as MNIST, COIL and WebKB. We also make use of fast numerical solvers for finding the eigenvectors and eigenvalues of the graph Laplacian, and take advantage of the sparsity of the matrix. Experiments indicate that the results are competitive with or better than the current state-of-the-art in multiclass graph-based segmentation algorithms for high-dimensional data.

[1]  Jitendra Malik,et al.  Efficient spatiotemporal grouping using the Nystrom method , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[2]  Arjuna Flenner,et al.  Multiclass Diffuse Interface Models for Semi-supervised Learning on Graphs , 2012, ICPRAM.

[3]  Alan L. Yuille,et al.  The Concave-Convex Procedure (CCCP) , 2001, NIPS.

[4]  Abderrahim Elmoataz,et al.  Nonlocal Discrete Regularization on Weighted Graphs: A Framework for Image and Manifold Processing , 2008, IEEE Transactions on Image Processing.

[5]  Camille Couprie,et al.  Combinatorial Continuous Maximal Flows , 2010, ArXiv.

[6]  Sameer A. Nene,et al.  Columbia Object Image Library (COIL100) , 1996 .

[7]  Bernhard Schölkopf,et al.  Learning with Local and Global Consistency , 2003, NIPS.

[8]  Matthias Hein,et al.  Spectral clustering based on the graph p-Laplacian , 2009, ICML '09.

[9]  U. Feige,et al.  Spectral Graph Theory , 2015 .

[10]  Xavier Bresson,et al.  Multiclass Total Variation Clustering , 2013, NIPS.

[11]  Xue-Cheng Tai,et al.  A study on continuous max-flow and min-cut approaches , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[13]  Tom M. Mitchell,et al.  Learning to Extract Symbolic Knowledge from the World Wide Web , 1998, AAAI/IAAI.

[14]  Luca Maria Gambardella,et al.  Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence Flexible, High Performance Convolutional Neural Networks for Image Classification , 2022 .

[15]  Matthias Hein,et al.  Beyond Spectral Clustering - Tight Relaxations of Balanced Graph Cuts , 2011, NIPS.

[16]  L. Evans Convergence of an algorithm for mean curvature motion , 1993 .

[17]  Andrew Calway,et al.  International Conference on Pattern Recognition Applications And Methods , 2012 .

[18]  Andrea L. Bertozzi,et al.  A Wavelet-Laplace Variational Technique for Image Deconvolution and Inpainting , 2008, IEEE Transactions on Image Processing.

[19]  Robert Tibshirani,et al.  Classification by Pairwise Coupling , 1997, NIPS.

[20]  Alexander Zien,et al.  Semi-Supervised Learning , 2006 .

[21]  Camille Couprie,et al.  Combinatorial Continuous Maximum Flow , 2010, SIAM J. Imaging Sci..

[22]  A. Bertozzi,et al.  $\Gamma$-convergence of graph Ginzburg-Landau functionals , 2012, Advances in Differential Equations.

[23]  Ronald R. Coifman,et al.  Regularization on Graphs with Function-adapted Diffusion Processes , 2008, J. Mach. Learn. Res..

[24]  Arjuna Flenner,et al.  Diffuse Interface Models on Graphs for Classification of High Dimensional Data , 2012, SIAM Rev..

[25]  Thomas G. Dietterich,et al.  Solving Multiclass Learning Problems via Error-Correcting Output Codes , 1994, J. Artif. Intell. Res..

[26]  G. Barles,et al.  A Simple Proof of Convergence for an Approximation Scheme for Computing Motions by Mean Curvature , 1995 .

[27]  Andrea L. Bertozzi,et al.  Wavelet analogue of the Ginzburg–Landau energy and its Γ-convergence , 2010 .

[28]  Leo Grady,et al.  Discrete Calculus - Applied Analysis on Graphs for Computational Science , 2010 .

[29]  B. Schölkopf,et al.  A Regularization Framework for Learning from Graph Data , 2004, ICML 2004.

[30]  S. Esedoglu,et al.  Threshold dynamics for the piecewise constant Mumford-Shah functional , 2006 .

[31]  B. Mohar THE LAPLACIAN SPECTRUM OF GRAPHS y , 1991 .

[32]  Jing Yuan,et al.  Convex Multi-class Image Labeling by Simplex-Constrained Total Variation , 2009, SSVM.

[33]  S. Osher,et al.  Motion of multiple junctions: a level set approach , 1994 .

[34]  Daniel Cremers,et al.  A Convex Approach to Minimal Partitions , 2012, SIAM J. Imaging Sci..

[35]  A. Bertozzi,et al.  Mean Curvature, Threshold Dynamics, and Phase Field Theory on Finite Graphs , 2013, 1307.0045.

[36]  Rüdiger Westermann,et al.  RANDOM WALKS FOR INTERACTIVE ALPHA-MATTING , 2005 .

[37]  Jeff A. Bilmes,et al.  Semi-Supervised Learning with Measure Propagation , 2011, J. Mach. Learn. Res..

[38]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[39]  Christopher R. Anderson,et al.  A Rayleigh-Chebyshev procedure for finding the smallest eigenvalues and associated eigenvectors of large sparse Hermitian matrices , 2010, J. Comput. Phys..

[40]  Pietro Perona,et al.  Self-Tuning Spectral Clustering , 2004, NIPS.

[41]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[42]  Andrea L. Bertozzi,et al.  Inpainting of Binary Images Using the Cahn–Hilliard Equation , 2007, IEEE Transactions on Image Processing.

[43]  Anson Cheung,et al.  Phase Transitions and Collective Phenomena , 2011 .

[44]  Xiaojin Zhu,et al.  --1 CONTENTS , 2006 .

[45]  Xavier Bresson,et al.  Multi-class Transductive Learning Based on ℓ1 Relaxations of Cheeger Cut and Mumford-Shah-Potts Model , 2013, Journal of Mathematical Imaging and Vision.

[46]  Leo Grady,et al.  Multilabel random walker image segmentation using prior models , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[47]  Robert V. Kohn,et al.  Local minimisers and singular perturbations , 1989, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[48]  Bernhard Schölkopf,et al.  Training Invariant Support Vector Machines , 2002, Machine Learning.

[49]  Yunmei Chen,et al.  Projection Onto A Simplex , 2011, 1101.6081.

[50]  Xavier Bresson,et al.  Convergence and Energy Landscape for Cheeger Cut Clustering , 2012, NIPS.

[51]  Camille Couprie,et al.  Power Watershed: A Unifying Graph-Based Optimization Framework , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[52]  Michael William Newman,et al.  The Laplacian spectrum of graphs , 2001 .

[53]  Mason A. Porter,et al.  A Method Based on Total Variation for Network Modularity Optimization Using the MBO Scheme , 2013, SIAM J. Appl. Math..

[54]  Alan L. Yuille,et al.  The Concave-Convex Procedure , 2003, Neural Computation.

[55]  Thorsten Joachims,et al.  Transductive Learning via Spectral Graph Partitioning , 2003, ICML.

[56]  Yann LeCun,et al.  The mnist database of handwritten digits , 2005 .

[57]  Harald Garcke,et al.  Allen-Cahn systems with volume constraints , 2008 .

[58]  Guy Gilboa,et al.  Nonlocal Operators with Applications to Image Processing , 2008, Multiscale Model. Simul..

[59]  Andrea L. Bertozzi,et al.  An MBO Scheme on Graphs for Classification and Image Processing , 2013, SIAM J. Imaging Sci..

[60]  J. Keller,et al.  Fast reaction, slow diffusion, and curve shortening , 1989 .

[61]  Leo Grady,et al.  Random Walks for Image Segmentation , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[62]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[63]  Balázs Kégl,et al.  Boosting products of base classifiers , 2009, ICML '09.

[64]  Arthur D. Szlam,et al.  Total variation and cheeger cuts , 2010, ICML 2010.

[65]  MalikJitendra,et al.  Spectral Grouping Using the Nyström Method , 2004 .

[66]  Shih-Fu Chang,et al.  Graph transduction via alternating minimization , 2008, ICML '08.

[67]  A. Bertozzi,et al.  Γ-CONVERGENCE OF GRAPH GINZBURG–LANDAU FUNCTIONALS , 2012 .

[68]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[69]  Dani Lischinski,et al.  Spectral Matting , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[70]  Mikhail Belkin,et al.  Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples , 2006, J. Mach. Learn. Res..

[71]  D. J. Eyre,et al.  An Unconditionally Stable One-Step Scheme for Gradient Systems , 1997 .