Structure, Biosynthesis, and Physicochemical Properties of Archaebacterial Lipids

A series of recent phylogenetic studies, based on 16S ribosomal ribonucleic acid (RNA) composition (2, 33, 84, 104, 105) and other general biochemical features (33, 105) such as RNA polymerase (71, 81, 86, 113, 116), translation system (10, 54, 55, 80, 85), transfer RNA (44, 56, 58, 59), 5S ribosomal RNA (32, 69, 70), cell wall (21, 50-52, 77, 84, 103), and lipids (25, 26, 28, 53, 60, 67, 72, 98), reveals the existence of a new group of microorganisms named archaebacteria. Some features, e.g., their small size and structural simplicity, the absence of a nuclear membrane and organelles, and low deoxyribonucleic acid content, indicate that archaebacteria are procaryotic (33, 84, 105). In contrast, it has been proposed that archaebacteria are closely related to the ancestor eucaryotes (79, 100) since several characteristics, such as the presence of histone-like proteins (42, 87, 96), the nature of their translation system (54, 55, 85), and the sequence of their 5S RNA (46) and that of ribosomal proteins (73), are considered to be typical of eucaryotes. This body of results leads us to consider that archaebacteria are as far from eubacteria as they are from eucaryotes (103). Archaebacteria are quite interesting microorganisms from the point of view of the early evolution of life; indeed, their name was given to underline the hypothesis that these organisms were the dominant inhabitants of the earth in early ancient times (2, 33, 104, 105). In this respect, archaebacteria, as a distinct primary kingdom, are very important as they give us some indications of the early events in the evolution of cells, thus contributing to a better understanding of the universal ancestor. Archaebacteria are characterized by a wide metabolic diversity and a high degree of morphological variability that is roughly comparable to that found in eubacteria. In fact, this group includes aerobes, anaerobes, autotrophs, heterotrophs, thermophiles, acidophiles, phototrophs, cocci, rods, and disk-shaped and pleiomorphic forms (1, 6, 7, 9, 16, 22, 49, 74, 77, 83, 93, 104, 105, 111, 112, 114, 115). Archaebacteria are classified into three major phenotypes;

[1]  S. Brassell,et al.  Specific acyclic isoprenoids as biological markers of methanogenic bacteria in marine sediments , 1981, Nature.

[2]  M. de Rosa,et al.  Archaebacterial elongation factor Tu insensitive to pulvomycin and kirromycin , 1982, FEBS letters.

[3]  R. T. Walker,et al.  The nucleotide sequence of the tRNAMMet from the archaebacterium Thermoplasma acidophilum. , 1981, Nucleic acids research.

[4]  M. Kates,et al.  Novel complex polar lipids from the methanogenic archaebacterium Methanospirillum hungatei. , 1981, Science.

[5]  M. Singer,et al.  Ether-containing lipids of methanogenic bacteria. , 1978, Biochemical and biophysical research communications.

[6]  A. Gliozzi,et al.  Vesicles from mixtures of bipolar archaebacterial lipids with egg phosphatidylcholine , 1983 .

[7]  T. D. Brock,et al.  A Thermophilic, Acidophilic Mycoplasma Isolated from a Coal Refuse Pile , 1970, Science.

[8]  A. Gliozzi,et al.  Artificial black membranes from bipolar lipids of thermophilic Archaebacteria. , 1982, Biophysical journal.

[9]  H. Klenk,et al.  The Archaebacterium Thermofilum pendens Represents, a Novel Genus of the Thermophilic, Anaerobic Sulfur Respiring Thermoproteales. , 1983, Systematic and applied microbiology.

[10]  A. Haug,et al.  Structure of membrane lipids and physico-biochemical properties of the plasma membrane from Thermoplasma acidophilum, adapted to growth at 37 degrees C. , 1979, Biochimica et biophysica acta.

[11]  C R Woese,et al.  The phylogeny of prokaryotes. , 1980, Microbiological sciences.

[12]  T. Tornabene,et al.  Diphytanyl and dibiphytanyl glycerol ether lipids of methanogenic archaebacteria. , 1979, Science.

[13]  M. Rosa,et al.  Effects of temperature on ether lipid composition of Caldariella acidophila , 1980 .

[14]  P. Albrecht,et al.  Isoprenoid ethers; backbone of complex lipids of the archaebacterium Sulfolobus solfataricus , 1983 .

[15]  M. Yaguchi,et al.  The Evolution of the Archaebacterial Ribosome , 1982 .

[16]  M. Rosa,et al.  A New type of cell membrane, in thermophilic archaebacteria, based on bipolar ether lipids , 1983 .

[17]  S. T. Cowan Bergey's Manual of Determinative Bacteriology , 1948, Nature.

[18]  M. Rosa,et al.  Structure of calditol, a new branched-chain nonitol, and of the derived tetraether lipids in thermoacidophile archaebacteria of the Caldariella group , 1980 .

[19]  M. de Rosa,et al.  Structure and polymorphism of bipolar isopranyl ether lipids from archaebacteria. , 1985, Journal of molecular biology.

[20]  T. Langworthy Comparative lipid composition of heterotrophically and autotrophically grown Sulfolobus acidocaldarius , 1977, Journal of bacteriology.

[21]  M. de Rosa,et al.  Extremely thermophilic acidophilic bacteria convergent with Sulfolobus acidocaldarius. , 1975, Journal of general microbiology.

[22]  D. Oesterhelt,et al.  The 2-D Crystalline Cell Wall of Sulfolobus acidocaldarius: Structure, Solubilization, and Reassembly , 1980 .

[23]  D. Searcy Histone-like protein in the prokaryote Thermoplasma acidophilum. , 1975, Biochimica et biophysica acta.

[24]  B. de Kruijff,et al.  Lipid polymorphism and the functional roles of lipids in biological membranes. , 1979, Biochimica et biophysica acta.

[25]  M. de Rosa,et al.  Ultrastructure of an extremely thermophilic acidophilic micro-organism. , 1975, Journal of general microbiology.

[26]  S. Singer,et al.  The fluid mosaic model of the structure of cell membranes. , 1972, Science.

[27]  W. Mayberry,et al.  Long-Chain Glycerol Diether and Polyol Dialkyl Glycerol Triether Lipids of Sulfolobus acidocaldarius , 1974, Journal of bacteriology.

[28]  Carl R. Woese,et al.  Archaebacteria and Cellular Origins: An Overview , 1982 .

[29]  M. Rosa,et al.  13C-NMR assignments and biosynthetic data for the ether lipids of Caldariella , 1977 .

[30]  T. D. Brock,et al.  THE GENUS THERMOPLASMA * , 1973 .

[31]  M. Rosa,et al.  An Asymmetric Archaebacterial Diether Lipid from Alkaliphilic Halophiles , 1982 .

[32]  W. Mayberry,et al.  Lipids of Thermoplasma acidophilum , 1972, Journal of bacteriology.

[33]  R. T. Walker,et al.  The nucleotide sequence of the 5S rRNA from the archaebacterium Thermoplasma acidophilum. , 1981, Nucleic acids research.

[34]  K. Schleifer,et al.  The Phylogenetic Position of Methanothrix soehngenii. Elucidated by a Modified Technique of Sequencing Oligonucleotides from 16S rRNA , 1982 .

[35]  W. Zillig,et al.  Desulfurococcaceae, the Second Family of the Extremely Thermophilic, Anaerobic, Sulfur-Respiring Thermoproteales , 1982 .

[36]  C. Woese,et al.  Phylogenetic structure of the prokaryotic domain: The primary kingdoms , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[37]  J. Brierley,et al.  A chemoautotrophic and thermophilic microorganism isolated from an acid hot spring. , 1973, Canadian journal of microbiology.

[38]  K. Stetter Ultrathin mycelia-forming organisms from submarine volcanic areas having an optimum growth temperature of 105 °C , 1982, Nature.

[39]  C. Woese,et al.  Methanogens: reevaluation of a unique biological group , 1979, Microbiological reviews.

[40]  Harald Huber,et al.  Methanothermus fervidus, sp. nov., a novel extremely thermophilic methanogen isolated from an Icelandic hot spring , 1981 .

[41]  W. Grant,et al.  Nucleic acid studies on halophilic archaebacteria. , 1985, Journal of general microbiology.

[42]  M. Kessel,et al.  Archaebacterial elongation factor is ADP-ribosylated by diphtheria toxin , 1980, Nature.

[43]  M. Kates,et al.  Novel polar lipids from the methanogen Methanospirillum hungatei GP1. , 1981, Biochimica et biophysica acta.

[44]  W. Stoeckenius,et al.  Box-shaped halophilic bacteria , 1982, Journal of bacteriology.

[45]  H. G. Trüper,et al.  Halobacterium pharaonis sp. nov., a New, Extremely Haloalkaliphilic Archaebacterium with Low Magnesium Requirement , 1982 .

[46]  M. Rosa,et al.  The lipids of archaebacteria. , 1988, Progress in lipid research.

[47]  M. Rosa,et al.  Complex lipids of Caldariella acidophila, a thermoacidophile archaebacterium , 1980 .

[48]  P. Albrecht,et al.  Polar Lipids of Archaebacteria in Sediments and Petroleums , 1982, Science.

[49]  L. V. Valen,et al.  The Archaebacteria and eukaryotic origins , 1980, Nature.

[50]  B. Henkel,et al.  Physicochemical characterization of tetraether lipids from Thermoplasma acidophilum. Calorimetric studies on miscibility with diether model lipids carrying branched or unbranched alkyl chains , 1985 .

[51]  T. D. Brock The Genus Sulfolobus , 1978 .

[52]  A. Böck,et al.  Properties of the Translational Apparatus of Archaebacteria , 1982 .

[53]  S. Osawa,et al.  Evolutionary change in 5S RNA secondary structure and a phylogenic tree of 54 5S RNA species. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[54]  R. Gagosian,et al.  Membrane Lipid from Deep-Sea Hydrothermal Vent Methanogen: a New Macrocyclic Glycerol Diether , 1983, Science.

[55]  E. Stackebrandt,et al.  Pyrodictium gen. nov., a New Genus of Submarine Disc-Shaped Sulphur Reducing Archaebacteria Growing Optimally at 105°C. , 1983, Systematic and applied microbiology.

[56]  H. König,et al.  Isolation and characterization of Methanolobus tindarius, sp. nov., a coccoid methanogen growing only on methanol and methylamines , 1982 .

[57]  R. Schnabel,et al.  Transcription in Archaebacteria , 1982 .

[58]  H. Degani,et al.  Proton and carbon-13 nuclear magnetic resonance studies of the polar lipids of Halobacterium halobium. , 1980, Biochemistry.

[59]  M. Rosa,et al.  Incorporation of labelled glycerols into ether lipids in Caldariella acidophila , 1982 .

[60]  D. Oesterhelt,et al.  Functions of a new photoreceptor membrane. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[61]  M. Rosa,et al.  Structural regularities in tetraether lipids of Caldariella and their biosynthetic and phyletic implications , 1980 .

[62]  B. Tindall,et al.  Natronobacterium gen. nov. and Natronococcus gen. nov., Two New Genera of Haloalkaliphilic Archaebacteria , 1984 .

[63]  A. Gliozzi,et al.  Effect of isoprenoid cyclization on the transition temperature of lipids in thermophilic archaebacteria , 1983 .

[64]  K. Stetter,et al.  Two contrary modes of chemolithotrophy in the same archaebacterium , 1985, Nature.

[65]  M. Ihara,et al.  Initiator tRNAs from archaebacteria show common unique sequence characteristics , 1982, Nature.

[66]  G. Green,et al.  Histone-like protein in the Archaebacterium Sulfolobus acidocaldarius. , 1983, Biochimica et biophysica acta.

[67]  W. Zillig,et al.  Histone-like Proteins in Eu- and Archaebacteria , 1982 .

[68]  M. Rosa,et al.  Regularity of isoprenoid biosynthesis in the ether lipids of archaebacteria , 1980 .

[69]  J. Hahn Geochemical Fossils of a Possibly Archaebacterial Origin in Ancient Sediments , 1982 .

[70]  M. Collins,et al.  A Rapid Procedure for the Detection of Archaebacterial Lipids in Halophilic Bacteria , 1981 .

[71]  W. Stoeckenius,et al.  Bacteriorhodopsin and the purple membrane of halobacteria. , 1979, Biochimica et biophysica acta.

[72]  J. Zeikus,et al.  Microbiology of Methanogenesis in Thermal, Volcanic Environments , 1980, Journal of bacteriology.

[73]  J. Zeikus,et al.  Fine Structure of Methanobacterium thermoautotrophicum: Effect of Growth Temperature on Morphology and Ultrastructure , 1973, Journal of bacteriology.

[74]  R. Vierstra,et al.  The effect of Al3+ on the physical properties of membrane lipids in Thermoplasmaacidophilum , 1978 .

[75]  J. Brown Bergey's Manual of Determinative Bacteriology (5th ed.) , 1939 .

[76]  M. Rosa,et al.  A C25,C25 Diether Core Lipid from Archaebacterial Haloalkaliphiles , 1983 .

[77]  K. Schleifer,et al.  Molecular systematics of prokaryotes. , 1983, Annual review of microbiology.

[78]  O. Kandler Cell Wall Structures and their Phylogenetic Implications , 1982 .

[79]  W. Zillig,et al.  Thermoproteales: A novel type of extremely thermoacidophilic anaerobic archaebacteria isolated from Icelandic solfataras , 1981 .

[80]  A. Gliozzi,et al.  Structure and transport properties of artificial bipolar lipid membranes , 1982 .

[81]  M. Kessel,et al.  Identification and Comparison of Eighteen Archaebacteria by Means of the Diphtheria Toxin Reaction , 1982 .

[82]  Krzysztof Dołowy,et al.  Bioelectrochemistry of cell surfaces , 1984 .

[83]  T. Langworthy,et al.  MEMBRANES AND LIPIDS OF EXTREMELY THERMOACIDOPHILIC MICROORGANISMS , 1978 .

[84]  A. Haug,et al.  Membrane potential of Thermoplasma acidophila. , 1977, FEBS letters.

[85]  G. Fox,et al.  An archaebacterial 5S rRNA contains a long insertion sequence , 1981, Nature.

[86]  W. Mayberry,et al.  Characterization of the Membranes of Thermoplasma acidophilum , 1973, Journal of bacteriology.

[87]  J. Zeikus The biology of methanogenic bacteria , 1977, Bacteriological reviews.