Electrodeposition of copper from spent Li-ion batteries by electrochemical quartz crystal microbalance and impedance spectroscopy techniques

Information about the copper electrodeposition mechanism at different pH values was obtained using an electrochemical quartz crystal microbalance (EQCM) technique, as well as potentiodynamic, potentiostatic, and electrochemical impedance spectroscopy (EIS) techniques. In agreement with the measurements obtained from the EQCM and potentiostatic experiments, an intermediate Cu+ species and a CuO layer are formed. Simultaneous mechanism of direct reduction of Cu2+ and copper oxide (CuO) reduction at pH 2.0 and 4.5 occur. The EIS experiment shows a diffusion-controlled process by the presence of a Warburg element, a CPE related to the irregular metallic copper electrodeposition, and a resistance of the electrodeposit.

[1]  O. Savadogo,et al.  Electrocatalytic parameters of the electrodeposition of copper with silicotungstic acid (STA) , 1999 .

[2]  V. Jović,et al.  Copper electrodeposition from a copper acid baths in the presence of PEG and NaCl , 2001 .

[3]  P. Cavallotti,et al.  Copper electrodeposition from a pH 3 sulfate electrolyte , 2002 .

[4]  B. Pešić,et al.  Electrodeposition of copper: the nucleation mechanisms , 2002 .

[5]  E. Kálmán,et al.  Electrochemical behaviour of an inhibitor film formed on copper surface , 2005 .

[6]  E. Barsoukov,et al.  Impedance spectroscopy : theory, experiment, and applications , 2005 .

[7]  Kazuhiko Takeno,et al.  Influence of cycle capacity deterioration and storage capacity deterioration on Li-ion batteries used in mobile phones , 2005 .

[8]  M. A. Machado,et al.  Studies on the reduction of beta-enamino ketones , 2006 .

[9]  S. Machado,et al.  A microgravimetric study of simultaneous adsorption of anions and copper on polycrystalline Pt surfaces , 2006 .

[10]  J. Ramos-Barrado,et al.  Nanostructured Cu2O thin film electrodes prepared by electrodeposition for rechargeable lithium batteries , 2007 .

[11]  H. Perrot,et al.  Growth of electrolytic copper dendrites. III: Influence of the presence of copper sulphate , 2007 .

[12]  M. A. Pasquale,et al.  Copper electrodeposition from an acidic plating bath containing accelerating and inhibiting organic additives , 2008 .

[13]  C. Gabrielli,et al.  An investigation of copper interconnect deposition bath ageing by electrochemical impedance spectroscopy , 2008 .

[14]  G. Zangari,et al.  Copper electrodeposition onto the dendrimer-modified native oxide of silicon substrates , 2008 .

[15]  E. Fachini,et al.  Nanostructured copper thin film used for catalysis , 2008 .

[16]  O. Schneider,et al.  Application of the electrochemical quartz crystal microbalance technique to copper sonoelectrochemistry: Part 1. Sulfate-based electrolytes , 2008 .

[17]  I. Milošev,et al.  Impedance and XPS study of benzotriazole films formed on copper, copper-zinc alloys and zinc in chloride solution , 2008 .

[18]  Soo‐Kil Kim,et al.  The influence of thiourea on copper electrodeposition: Adsorbate identification and effect on electrochemical nucleation , 2008 .

[19]  K. Asadpour‐Zeynali,et al.  Reaction and nucleation mechanisms of copper electrodeposition on disposable pencil graphite electrode , 2009 .