Reconstructing schemes from the derived category

Abstract We generalize Bondal and Orlov's Reconstruction Theorem for a Gorenstein scheme X and a projective morphism X → T whose (relative) dualizing sheaf is either T-ample or T-antiample.

[1]  M. Ballard Derived categories of sheaves on singular schemes with an application to reconstruction , 2008, 0801.2599.

[2]  D. H. Ruip'erez,et al.  Relative integral functors for singular fibrations and singular partners , 2006, math/0610319.

[3]  D. H. Ruipérez,et al.  Fourier–Mukai transforms for Gorenstein schemes , 2005, math/0506593.

[4]  Paul Balmer The spectrum of prime ideals in tensor triangulated categories , 2004, math/0409360.

[5]  Jiun C. Chen Flops and Equivalences of Derived Categories for Threefolds with Only Terminal Gorenstein Singularities , 2002 .

[6]  P. Balmer,et al.  Presheaves of triangulated categories and reconstruction of schemes , 2001, math/0111049.

[7]  A. Bondal,et al.  Reconstruction of a Variety from the Derived Category and Groups of Autoequivalences , 1997, Compositio Mathematica.

[8]  T. Bridgeland Flops and derived categories , 2000, math/0009053.

[9]  A. Maciocia,et al.  Fourier-Mukai transforms for K3 and elliptic fibrations , 1999, math/9908022.

[10]  T. Bridgeland Fourier-Mukai transforms for elliptic surfaces , 1997, alg-geom/9705002.

[11]  U. Bruzzo,et al.  Mirror Symmetry on K3 Surfaces via Fourier–Mukai Transform , 1997, alg-geom/9704023.

[12]  D. Orlov,et al.  Equivalences of derived categories and K3 surfaces , 1996, alg-geom/9606006.

[13]  A. Polishchuk Symplectic biextensions and a generalization of the Fourier-Mukai transform , 1995, alg-geom/9511018.

[14]  A.Bondal,et al.  Semiorthogonal decomposition for algebraic varieties , 1995, alg-geom/9506012.

[15]  A. Bondal,et al.  Semiorthogonal decompositions for algebraic varieties. , 1995 .

[16]  向井 茂 Duality between D(X) and D(X) with its application to Picard sheaves , 1982 .

[17]  S. Mukai Duality between D(X) and with its application to picard sheaves , 1981, Nagoya Mathematical Journal.