Accurate color imaging of pathology slides using holography and absorbance spectrum estimation of histochemical stains

Holographic microscopy presents challenges for color reproduction due to the usage of narrow‐band illumination sources, which especially impacts the imaging of stained pathology slides for clinical diagnoses. Here, an accurate color holographic microscopy framework using absorbance spectrum estimation is presented. This method uses multispectral holographic images acquired and reconstructed at a small number (e.g., three to six) of wavelengths, estimates the absorbance spectrum of the sample, and projects it onto a color tristimulus. Using this method, the wavelength selection is optimized to holographically image 25 pathology slide samples with different tissue and stain combinations to significantly reduce color errors in the final reconstructed images. The results can be used as a practical guide for various imaging applications and, in particular, to correct color distortions in holographic imaging of pathology samples spanning different dyes and tissue types.

[1]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[2]  Claes Johnson Numerical solution of partial differential equations by the finite element method , 1988 .

[3]  W D Wright,et al.  Color Science, Concepts and Methods. Quantitative Data and Formulas , 1967 .

[4]  Yibo Zhang,et al.  Wide-field pathology imaging using on-chip microscopy , 2015, Virchows Archiv.

[5]  O. Matoba,et al.  Four-Wavelength Color Digital Holography , 2012, Journal of Display Technology.

[6]  Bahram Javidi,et al.  Automated Three-Dimensional Identification and Tracking of Micro/Nanobiological Organisms by Computational Holographic Microscopy , 2009, Proceedings of the IEEE.

[7]  Zach DeVito,et al.  Opt , 2017 .

[8]  B. Javidi,et al.  Compressive Fresnel Holography , 2010, Journal of Display Technology.

[9]  Yaliang Li,et al.  SCI , 2021, Proceedings of the 30th ACM International Conference on Information & Knowledge Management.

[10]  Aydogan Ozcan,et al.  Wide-field imaging of birefringent synovial fluid crystals using lens-free polarized microscopy for gout diagnosis , 2016, Scientific Reports.

[11]  A. Ozcan,et al.  Maskless imaging of dense samples using pixel super-resolution based multi-height lensfree on-chip microscopy , 2012, Optics Express.

[12]  Yibo Zhang,et al.  Wide-field computational imaging of pathology slides using lens-free on-chip microscopy , 2014, Science Translational Medicine.

[13]  M. S. Peercy,et al.  Wavelength selection for true-color holography. , 1994, Applied optics.

[14]  Aydogan Ozcan,et al.  Field-portable wide-field microscopy of dense samples using multi-height pixel super-resolution based lensfree imaging. , 2012, Lab on a chip.

[15]  Aydogan Ozcan,et al.  Increased space-bandwidth product in pixel super-resolved lensfree on-chip microscopy , 2013, Scientific Reports.

[16]  Imaging (1). , 2020, Biomedizinische Technik. Biomedical engineering.

[17]  L. Lagae,et al.  Time-lapse lens-free imaging of cell migration in diverse physical microenvironments. , 2016, Lab on a chip.

[18]  Derek Tseng,et al.  Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications. , 2010, Lab on a chip.

[19]  Bahram Javidi,et al.  Three-dimensional imaging and recognition of microorganism using single-exposure on-line (SEOL) digital holography. , 2005, Optics express.

[20]  Prarthana Shrestha,et al.  Color accuracy and reproducibility in whole slide imaging scanners , 2014, Journal of medical imaging.

[21]  M. Teague Deterministic phase retrieval: a Green’s function solution , 1983 .

[22]  Yukako Yagi,et al.  Color standardization in whole slide imaging using a color calibration slide , 2014, Journal of pathology informatics.

[23]  Yibo Zhang,et al.  Sparsity-based multi-height phase recovery in holographic microscopy , 2016, Scientific Reports.

[24]  A. Ozcan,et al.  Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution , 2010, Optics express.

[25]  A. Ozcan,et al.  Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array. , 2011, Lab on a chip.

[26]  Joseph M. Martel,et al.  Three-Dimensional Holographic Refractive-Index Measurement of Continuously Flowing Cells in a Microfluidic Channel. , 2014, Physical review applied.

[27]  J. Goodman Introduction to Fourier optics , 1969 .

[28]  Constance de Koning,et al.  Editors , 2003, Annals of Emergency Medicine.

[29]  Aydogan Ozcan,et al.  Field-Portable Pixel Super-Resolution Colour Microscope , 2013, PloS one.

[30]  G. Wyszecki,et al.  Color Science Concepts and Methods , 1982 .

[31]  P. Ferraro,et al.  Microscopy imaging and quantitative phase contrast mapping in turbid microfluidic channels by digital holography. , 2012, Lab on a chip.

[32]  Aydogan Ozcan,et al.  Edge sparsity criterion for robust holographic autofocusing. , 2017, Optics letters.

[33]  Adv , 2019, International Journal of Pediatrics and Adolescent Medicine.

[34]  Keith A. Nugent,et al.  Coherent lensless X-ray imaging , 2010 .

[35]  Osamu Matoba,et al.  Digital Holography Using Spectral Estimation Technique , 2014, Journal of Display Technology.

[36]  Antonio-José Almeida,et al.  NAT , 2019, Springer Reference Medizin.

[37]  Pasquale Memmolo,et al.  Recent advances in holographic 3D particle tracking , 2015 .

[38]  Aydogan Ozcan,et al.  Wide-field computational color imaging using pixel super-resolved on-chip microscopy. , 2013, Optics express.

[39]  W Scott Campbell,et al.  Sixty-five thousand shades of gray: importance of color in surgical pathology diagnoses. , 2015, Human pathology.

[40]  Bahram Javidi,et al.  Object recognition by use of polarimetric phase-shifting digital holography. , 2007, Optics letters.

[41]  H Haneishi,et al.  System design for accurately estimating the spectral reflectance of art paintings. , 2000, Applied optics.

[42]  Bahram Javidi,et al.  3-D Visualization and Identification of Biological Microorganisms Using Partially Temporal Incoherent Light In-Line Computational Holographic Imaging , 2008, IEEE Transactions on Medical Imaging.

[43]  Aydogan Ozcan,et al.  High-throughput lensfree 3D tracking of human sperms reveals rare statistics of helical trajectories , 2012, Proceedings of the National Academy of Sciences.

[44]  Yibo Zhang,et al.  Computational out-of-focus imaging increases the space–bandwidth product in lens-based coherent microscopy , 2016 .

[45]  A. Ozcan,et al.  Synthetic aperture-based on-chip microscopy , 2015, Light: Science & Applications.

[46]  Demetri Psaltis,et al.  Three-dimensional harmonic holographic microcopy using nanoparticles as probes for cell imaging. , 2009, Optics express.

[47]  T. Ohmori,et al.  LAB , 2020, Catalysis from A to Z.

[48]  Zhecan Wang,et al.  Learning Visual Commonsense for Robust Scene Graph Generation , 2020, ECCV.

[49]  Andrew G. Glen,et al.  APPL , 2001 .

[50]  Bernhard Hill,et al.  Comparative analysis of the quantization of color spaces on the basis of the CIELAB color-difference formula , 1997, TOGS.

[51]  Yibo Zhang,et al.  Phase recovery and holographic image reconstruction using deep learning in neural networks , 2017, Light: Science & Applications.

[52]  D. Vernon Inform , 1995, Encyclopedia of the UN Sustainable Development Goals.

[53]  J. Rogers,et al.  Spatial light interference microscopy (SLIM) , 2010, IEEE Photonic Society 24th Annual Meeting.

[54]  友紀子 中川 SoC , 2021, Journal of Japan Society for Fuzzy Theory and Intelligent Informatics.

[55]  Abigail Beckel Hum , 2017 .

[56]  A. Ozcan,et al.  Pixel super-resolution using wavelength scanning , 2015, Light: Science & Applications.

[57]  Derek K. Tseng,et al.  Compact and light-weight automated semen analysis platform using lensfree on-chip microscopy. , 2010, Analytical chemistry.

[58]  Randolph E. Bank,et al.  PLTMG - a software package for solving elliptic partial differential equations: users' guide 8.0 , 1998, Software, environments, tools.

[59]  Roland A. Terborg,et al.  Ultrasensitive interferometric on-chip microscopy of transparent objects , 2016, Science Advances.