Superlets: time-frequency super-resolution using wavelet sets

Time-frequency analysis is ubiquitous in many fields of science. Due to the Heisenberg-Gabor uncertainty principle, a single measurement cannot estimate precisely the localization of a finite signal in both time and frequency. Classical spectral estimators, like the short-time Fourier transform (STFT) or the continuous-wavelet transform (CWT) optimize either temporal or frequency resolution, or find a tradeoff that is suboptimal in both dimensions. Following the concept of optical super-resolution, we introduce a new spectral estimation method that enables time-frequency super-resolution. Sets of wavelets with increasing bandwidth are combined geometrically in a superlet to maintain the good temporal resolution of wavelets and gain frequency resolution in the high frequency range. We show that superlets outperform the STFT and CWT on synthetic data and brain signals recorded in humans and rodents. Superlets are able to resolve temporal and frequency details with unprecedented precision, revealing transient oscillation events otherwise hidden in averaged time-frequency analyses.

[1]  B. Hannaford,et al.  Approximating time-frequency density functions via optimal combinations of spectrograms , 1994, IEEE Signal Processing Letters.

[2]  G. Buzsáki,et al.  Mechanisms of gamma oscillations. , 2012, Annual review of neuroscience.

[3]  W. Singer,et al.  Gamma or no gamma, that is the question , 2014, Trends in Cognitive Sciences.

[4]  Anthonio Teolis,et al.  Computational signal processing with wavelets , 1998, Applied and numerical harmonic analysis.

[5]  J. Pernier,et al.  Oscillatory γ-Band (30–70 Hz) Activity Induced by a Visual Search Task in Humans , 1997, The Journal of Neuroscience.

[6]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[7]  Andrei Ciuparu,et al.  Sources of bias in single‐trial normalization procedures , 2016, The European journal of neuroscience.

[8]  D. Gabor,et al.  Theory of communication. Part 1: The analysis of information , 1946 .

[9]  P. Nunez,et al.  Electric fields of the brain , 1981 .

[10]  I. Osorio,et al.  Intrinsic time-scale decomposition: time–frequency–energy analysis and real-time filtering of non-stationary signals , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[11]  Rainer Heintzmann,et al.  Laterally modulated excitation microscopy: improvement of resolution by using a diffraction grating , 1999, European Conference on Biomedical Optics.

[12]  V. Pisarenko The Retrieval of Harmonics from a Covariance Function , 1973 .

[13]  Christopher Heil,et al.  Continuous and Discrete Wavelet Transforms , 1989, SIAM Rev..

[14]  Fredric J. Harris,et al.  Multirate Signal Processing for Communication Systems , 2004 .

[15]  Ovidiu F. Jurjuţ,et al.  The oscillation score: an efficient method for estimating oscillation strength in neuronal activity. , 2008, Journal of neurophysiology.

[16]  S. Mallat A wavelet tour of signal processing , 1998 .

[17]  John Ashmead Morlet wavelets in quantum mechanics , 2012 .

[18]  R. Shapley,et al.  Is Gamma-Band Activity in the Local Field Potential of V1 Cortex a “Clock” or Filtered Noise? , 2011, The Journal of Neuroscience.

[19]  S. Makeig,et al.  Mining event-related brain dynamics , 2004, Trends in Cognitive Sciences.

[20]  C. Torrence,et al.  A Practical Guide to Wavelet Analysis. , 1998 .

[21]  Walter J. Freeman Qualitative Overview of Population Neurodynamics , 1994 .

[22]  David Kleinfeld,et al.  Spectral methods for functional brain imaging. , 2014, Cold Spring Harbor protocols.

[23]  Arved J. Raudkivi,et al.  ANALYSIS OF INFORMATION , 1979 .

[24]  Jont B. Allen,et al.  Short term spectral analysis, synthesis, and modification by discrete Fourier transform , 1977 .

[25]  Danko Nikolić,et al.  Membrane Resonance Enables Stable and Robust Gamma Oscillations , 2012, Cerebral cortex.

[26]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[27]  W. Heisenberg Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .

[28]  W. Newsome,et al.  The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding , 1998, The Journal of Neuroscience.

[29]  Patrick J. Loughlin,et al.  An information-theoretic approach to positive time-frequency distributions , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[30]  J. Morlet,et al.  Wave propagation and sampling theory—Part I: Complex signal and scattering in multilayered media , 1982 .

[31]  Ali N. Akansu,et al.  Emerging applications of wavelets: A review , 2010, Phys. Commun..

[32]  P. Mitra,et al.  Analysis of dynamic brain imaging data. , 1998, Biophysical journal.

[33]  Jae S. Lim,et al.  Combined multiresolution (wide-band/narrow-band) spectrogram , 1992, IEEE Trans. Signal Process..

[34]  H. Leonhardt,et al.  A guide to super-resolution fluorescence microscopy , 2010, The Journal of cell biology.

[35]  W. Freiwald,et al.  Oscillatory synchrony in the monkey temporal lobe correlates with performance in a visual short-term memory task. , 2004, Cerebral cortex.

[36]  Lucia Melloni,et al.  Visual Exploration and Object Recognition by Lattice Deformation , 2011, PloS one.

[37]  Syed Ismail Shah,et al.  Techniques to Obtain Good Resolution and Concentrated Time-Frequency Distributions: A Review , 2009, EURASIP J. Adv. Signal Process..

[38]  Juhan Nam,et al.  A super-resolution spectrogram using coupled PLCA , 2010, INTERSPEECH.

[39]  S. Mallat VI – Wavelet zoom , 1999 .

[40]  O. Bertrand,et al.  Oscillatory gamma-band (30-70 Hz) activity induced by a visual search task in humans. , 1997, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[41]  A. Pérez-Villalba Rhythms of the Brain, G. Buzsáki. Oxford University Press, Madison Avenue, New York (2006), Price: GB £42.00, p. 448, ISBN: 0-19-530106-4 , 2008 .

[42]  J. Fermaglich Electric Fields of the Brain: The Neurophysics of EEG , 1982 .

[43]  Jon Martens,et al.  Modern RF and Microwave Measurement Techniques: Vector network analyzers , 2013 .