Sentiment analysis of customer data

[1]  Robert F. Whitelaw,et al.  News or Noise? Internet Postings and Stock Prices , 2001 .

[2]  Felipe Bravo-Marquez,et al.  Positive, Negative, or Neutral: Learning an Expanded Opinion Lexicon from Emoticon-Annotated Tweets , 2015, IJCAI.

[3]  Saif Mohammad,et al.  CROWDSOURCING A WORD–EMOTION ASSOCIATION LEXICON , 2013, Comput. Intell..

[4]  Zbigniew W. Ras,et al.  Action-Rules: How to Increase Profit of a Company , 2000, PKDD.

[5]  M. Laver,et al.  Extracting Policy Positions from Political Texts Using Words as Data , 2003, American Political Science Review.

[6]  Ronen Feldman,et al.  Techniques and applications for sentiment analysis , 2013, CACM.

[7]  Zbigniew W. Ras,et al.  User Friendly NPS-Based Recommender System for Driving Business Revenue , 2017, IJCRS.

[8]  Bing Liu,et al.  Sentiment Analysis and Subjectivity , 2010, Handbook of Natural Language Processing.

[9]  Bing Liu,et al.  Mining and summarizing customer reviews , 2004, KDD.

[10]  Zbigniew W. Ras,et al.  Personalized Meta-Action Mining for NPS Improvement , 2015, ISMIS.

[11]  Peter D. Turney Thumbs Up or Thumbs Down? Semantic Orientation Applied to Unsupervised Classification of Reviews , 2002, ACL.

[12]  Rob Malouf,et al.  A Preliminary Investigation into Sentiment Analysis of Informal Political Discourse , 2006, AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs.

[13]  Arun Sundararajan,et al.  Opinion Mining using Econometrics: A Case Study on Reputation Systems , 2007, ACL.

[14]  S. Rosen Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition , 1974, Journal of Political Economy.

[15]  Bo Pang,et al.  Thumbs up? Sentiment Classification using Machine Learning Techniques , 2002, EMNLP.

[16]  Satoshi Morinaga,et al.  Mining product reputations on the Web , 2002, KDD.

[17]  Finn Årup Nielsen,et al.  A New ANEW: Evaluation of a Word List for Sentiment Analysis in Microblogs , 2011, #MSM.

[18]  Michelle L. Gregory,et al.  User-directed Sentiment Analysis: Visualizing the Affective Content of Documents , 2006 .

[19]  Giuseppe Carenini,et al.  Extracting knowledge from evaluative text , 2005, K-CAP '05.

[20]  Oren Etzioni,et al.  Extracting Product Features and Opinions from Reviews , 2005, HLT.

[21]  Hua Xu,et al.  Grouping Product Features Using Semi-Supervised Learning with Soft-Constraints , 2010, COLING.

[22]  Chrysanthos Dellarocas,et al.  Exploring the value of online product reviews in forecasting sales: The case of motion pictures , 2007 .

[23]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[24]  Wayne Niblack,et al.  Sentiment mining in WebFountain , 2005, 21st International Conference on Data Engineering (ICDE'05).

[25]  Janyce Wiebe,et al.  Recognizing Contextual Polarity in Phrase-Level Sentiment Analysis , 2005, HLT.

[26]  C. Shapiro Premiums for High Quality Products as Returns to Reputations , 1983 .

[27]  Zbigniew W. Ras,et al.  From data to classification rules and actions , 2011, Int. J. Intell. Syst..

[28]  Zbigniew W. Ras,et al.  Mining for Actionable Knowledge in Tinnitus Datasets , 2017 .

[29]  Gilad Mishne,et al.  Predicting Movie Sales from Blogger Sentiment , 2006, AAAI Spring Symposium: Computational Approaches to Analyzing Weblogs.

[30]  Xiaohui Yu,et al.  ARSA: a sentiment-aware model for predicting sales performance using blogs , 2007, SIGIR.

[31]  Meng Wang,et al.  Aspect Ranking: Identifying Important Product Aspects from Online Consumer Reviews , 2011, ACL.

[32]  Bing Liu,et al.  Opinion observer: analyzing and comparing opinions on the Web , 2005, WWW '05.

[33]  Pattarachai Lalitrojwong,et al.  Mining Feature-Opinion in Online Customer Reviews for Opinion Summarization , 2010, J. Univers. Comput. Sci..

[34]  Zbigniew W. Ras,et al.  Visual Analysis of Relevant Features in Customer Loyalty Improvement Recommendation , 2018, Advances in Feature Selection for Data and Pattern Recognition.

[35]  Ke Wang,et al.  Mining Actionable Patterns by Role Models , 2006, 22nd International Conference on Data Engineering (ICDE'06).

[36]  Andrea Esuli,et al.  Determining Term Subjectivity and Term Orientation for Opinion Mining , 2006, EACL.

[37]  Suman Basuroy,et al.  How Critical are Critical Reviews? The Box Office Effects of Film Critics, Star Power, and Budgets , 2003 .

[38]  Thomas Hofmann,et al.  Probabilistic Latent Semantic Indexing , 1999, SIGIR Forum.

[39]  Zbigniew W. Ras,et al.  Advances in Music Information Retrieval , 2012, Advances in Music Information Retrieval.

[40]  T. V. Prabhakar,et al.  Sentence Level Sentiment Analysis in the Presence of Conjuncts Using Linguistic Analysis , 2007, ECIR.

[41]  Zbigniew W. Ras,et al.  Meta-actions as a Tool for Action Rules Evaluation , 2015, Feature Selection for Data and Pattern Recognition.

[42]  C. Shapiro Consumer Information, Product Quality, and Seller Reputation , 1982 .

[43]  David Taniar,et al.  Exception Rules Mining Based on Negative Association Rules , 2004, ICCSA.

[44]  Xiaoyan Zhu,et al.  Movie review mining and summarization , 2006, CIKM '06.

[45]  Panagiotis G. Ipeirotis,et al.  Show me the money!: deriving the pricing power of product features by mining consumer reviews , 2007, KDD '07.

[46]  Andrea Esuli,et al.  SentiWordNet 3.0: An Enhanced Lexical Resource for Sentiment Analysis and Opinion Mining , 2010, LREC.