B-Cell Depletion Reduces the Maturation of Cerebral Cavernous Malformations in Murine Models

[1]  R. Shenkar,et al.  Vascular Permeability in Cerebral Cavernous Malformations , 2015, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[2]  W. Min,et al.  EXCEPTIONAL AGGRESSIVENESS OF CEREBRAL CAVERNOUS MALFORMATION DISEASE ASSOCIATED WITH PDCD10 MUTATIONS , 2014, Genetics in Medicine.

[3]  C. McCulloch,et al.  Polymorphisms in Inflammatory and Immune Response Genes Associated with Cerebral Cavernous Malformation Type 1 Severity , 2014, Cerebrovascular Diseases.

[4]  C. Abreu-Goodger,et al.  The miR-155–PU.1 axis acts on Pax5 to enable efficient terminal B cell differentiation , 2014, The Journal of experimental medicine.

[5]  K. Frei,et al.  Bleeding propensity of cavernous malformations: impact of tight junction alterations on the occurrence of overt hematoma. , 2014, Journal of neurosurgery.

[6]  R. Shenkar,et al.  Immune complex formation and in situ B-cell clonal expansion in human cerebral cavernous malformations , 2014, Journal of Neuroimmunology.

[7]  Jon Thacker,et al.  Evaluation of Iron Content in Human Cerebral Cavernous Malformation Using Quantitative Susceptibility Mapping , 2014, Investigative radiology.

[8]  G. Johnson,et al.  Cerebral cavernous malformation is a vascular disease associated with activated RhoA signaling , 2013, Biological chemistry.

[9]  C. Scully,et al.  Biologics in oral medicine: ulcerative disorders. , 2013, Oral diseases.

[10]  S. Lazic,et al.  A call for transparent reporting to optimize the predictive value of preclinical research , 2012, Nature.

[11]  F. Deisenhammer,et al.  Alemtuzumab more effective than interferon β-1a at 5-year follow-up of CAMMS223 clinical trial , 2012, Neurology.

[12]  H. Sullivan,et al.  Alemtuzumab more effective than interferon β-1a at 5-year follow-up of CAMMS223 Clinical Trial , 2012, Neurology.

[13]  C. Warlow,et al.  Untreated clinical course of cerebral cavernous malformations: a prospective, population-based cohort study , 2012, The Lancet Neurology.

[14]  R. Shenkar,et al.  Fasudil Decreases Lesion Burden in a Murine Model of Cerebral Cavernous Malformation Disease , 2012, Stroke.

[15]  B. Thompson,et al.  Natural history and imaging prevalence of cavernous malformations in children and young adults. , 2012, Journal of neurosurgery. Pediatrics.

[16]  W. Min,et al.  Loss of cerebral cavernous malformation 3 (Ccm3) in neuroglia leads to CCM and vascular pathology , 2011, Proceedings of the National Academy of Sciences.

[17]  R. Kucherlapati,et al.  A novel mouse model of cerebral cavernous malformations based on the two-hit mutation hypothesis recapitulates the human disease. , 2011, Human molecular genetics.

[18]  R. Shenkar,et al.  Cerebral cavernous malformations proteins inhibit Rho kinase to stabilize vascular integrity , 2010, The Journal of experimental medicine.

[19]  E. Tournier-Lasserve,et al.  Recent insights into cerebral cavernous malformations: the molecular genetics of CCM , 2010, The FEBS journal.

[20]  N. Sciaky,et al.  Rho Kinase Inhibition Rescues the Endothelial Cell Cerebral Cavernous Malformation Phenotype* , 2010, The Journal of Biological Chemistry.

[21]  J. Singh,et al.  Abatacept for Rheumatoid Arthritis: A Cochrane Systematic Review , 2010, The Journal of Rheumatology.

[22]  M. Smyth,et al.  Type I natural killer T cells suppress tumors caused by p53 loss in mice. , 2009, Blood.

[23]  R. Shenkar,et al.  Immune response in human cerebral cavernous malformations. , 2009, Stroke.

[24]  G. Steinberg,et al.  Biallelic somatic and germline mutations in cerebral cavernous malformations (CCMs): evidence for a two-hit mechanism of CCM pathogenesis. , 2009, Human molecular genetics.

[25]  Christopher A. Jones,et al.  The Cerebral Cavernous Malformation signaling pathway promotes vascular integrity via Rho GTPases , 2009, Nature Medicine.

[26]  Min Chen,et al.  Complement Activation Is Involved in Renal Damage in Human Antineutrophil Cytoplasmic Autoantibody Associated Pauci-Immune Vasculitis , 2009, Journal of Clinical Immunology.

[27]  L. Morrison,et al.  Hemorrhage From Cavernous Malformations of the Brain: Definition and Reporting Standards , 2008, Stroke.

[28]  R. Shenkar,et al.  Oligoclonal immune response in cerebral cavernous malformations. Laboratory investigation. , 2007, Journal of neurosurgery.

[29]  D. Danilenko,et al.  Anti-BR3 antibodies: a new class of B-cell immunotherapy combining cellular depletion and survival blockade. , 2007, Blood.

[30]  R. Pope,et al.  Drug Insight: abatacept for the treatment of rheumatoid arthritis , 2006, Nature Clinical Practice Rheumatology.

[31]  A. Paetau,et al.  Complement activation associates with saccular cerebral artery aneurysm wall degeneration and rupture. , 2006, Neurosurgery.

[32]  S. Sa,et al.  A soluble BAFF antagonist, BR3-Fc, decreases peripheral blood B cells and lymphoid tissue marginal zone and follicular B cells in cynomolgus monkeys. , 2006, The American journal of pathology.

[33]  P. Ridker,et al.  Anti-Inflammatory Effects of Statins: Clinical Evidence and Basic Mechanisms , 2005, Nature Reviews Drug Discovery.

[34]  R. Gascoyne,et al.  Introduction of combined CHOP plus rituximab therapy dramatically improved outcome of diffuse large B-cell lymphoma in British Columbia. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[35]  J. Bluestone,et al.  An Important Role of CD80/CD86-CTLA-4 Signaling during Photocarcinogenesis in Mice1 , 2005, The Journal of Immunology.

[36]  Helmut Mack,et al.  Rho kinase, a promising drug target for neurological disorders , 2005, Nature Reviews Drug Discovery.

[37]  D. Louis,et al.  Loss of p53 sensitizes mice with a mutation in Ccm1 (KRIT1) to development of cerebral vascular malformations. , 2004, The American journal of pathology.

[38]  P. Schneider,et al.  BAFF AND APRIL: a tutorial on B cell survival. , 2003, Annual review of immunology.

[39]  R. Vile Faculty Opinions recommendation of IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. , 2001 .

[40]  R. Schreiber,et al.  IFNγ and lymphocytes prevent primary tumour development and shape tumour immunogenicity , 2001, Nature.

[41]  J. Trapani,et al.  Perforin-Mediated Cytotoxicity Is Critical for Surveillance of Spontaneous Lymphoma , 2000, The Journal of experimental medicine.

[42]  I. Awad,et al.  Ultrastructural pathological features of cerebrovascular malformations: a preliminary report. , 2000, Neurosurgery.

[43]  R. Clatterbuck,et al.  The natural history of cavernous malformations. , 1999, Neurosurgery clinics of North America.

[44]  R. Schreiber,et al.  Demonstration of an interferon γ-dependent tumor surveillance system in immunocompetent mice , 1998 .

[45]  R. Schreiber,et al.  Demonstration of an interferon gamma-dependent tumor surveillance system in immunocompetent mice. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[46]  D. Kondziolka,et al.  The natural history of cerebral cavernous malformations. , 1995, Journal of neurosurgery.

[47]  I. Awad,et al.  Intracranial cavernous malformations: lesion behavior and management strategies. , 1995, Neurosurgery.

[48]  R F Spetzler,et al.  The natural history of familial cavernous malformations: results of an ongoing study. , 1994, Journal of neurosurgery.

[49]  John R. Robinson,et al.  Pathological heterogeneity of angiographically occult vascular malformations of the brain. , 1993, Neurosurgery.

[50]  H. Steiger,et al.  Clinicopathological relations of cerebral cavernous angiomas: observations in eleven cases. , 1987, Neurosurgery.

[51]  M. Hadley,et al.  The MRI appearance of cavernous malformations (angiomas). , 1987, Journal of neurosurgery.