A universal optimum quarter point element

Abstract Finding the optimum quarter point element (QPE) in numerical fracture mechanics is complicated by the variability of the singularity-dominated zone existing in the vicinity of a cracktip from one crack configuration to another. This forces the universal optimum to be defined in a weak sense. Apart from their characteristics as “sentinel”-elements, proper sizing for singular transition elements is proposed. Numerical assessments indicate that certain geometrical shape regularity is required for the QPE, and that with the use of transition elements, the universal optimum QPE size lies in the range of 15–25% of the crack length for a 5% error bound. Supported by numerical experiments conducted and the use of proper transition elements' sizes proposed, this result can reasonably be conjectured to general crack configurations. In fact in a crack propagation model without adaptivity technique, the universal optimum strategy should give the “best” results possible. In a crack propagation model where topological changes discretely occur, the universal optimum in the strong sense may only be attainable when both remeshing and adaptivity techniques are blended. For an accurate determination of stress intensity factors (SIFs), it is recommended to conduct a few convergence studies about the universal optimum size to obtain the lower bound error. For a crack propagation model that uses stresses and/or energy-based failure criteria, it is suggested that the second term of the Williams' series expansion be included to improve accuracy.

[1]  R. D. Henshell,et al.  CRACK TIP FINITE ELEMENTS ARE UNNECESSARY , 1975 .

[2]  I. K. Lee,et al.  Stress intensity factor using quarter point element , 1985 .

[3]  T. Pian,et al.  On the convergence of the finite element method for problems with singularity , 1973 .

[4]  M. Isida Effect of width and length on stress intensity factors of internally cracked plates under various boundary conditions , 1971 .

[5]  A. Ingraffea,et al.  INTERACTIVE FINITE ELEMENT ANALYSIS OF REINFORCED CONCRETE: A FRACTURE MECHANICS APPROACH , 1981 .

[6]  H. D. Bui,et al.  Associated path independent J-integrals for separating mixed modes , 1983 .

[7]  Yukitaka Murakami Application of the body force method to the calculation of stress intensity factors for a crack in the arbitrarily shaped plate , 1978 .

[8]  G. B. Sinclair,et al.  A simple yet accurate finite element procedure for computing stress intensity factors , 1982 .

[9]  H. Rossmanith Modelling of fracture process zones and singularity dominated zones , 1983 .

[10]  On the accuracy of polynomial finite elements for crack problems , 1981 .

[11]  M. German,et al.  Crack extension modeling with singular quadratic isoparametric elements , 1976 .

[12]  E. Becker,et al.  A conforming crack tip element with quadratic variation in the singular fields , 1978 .

[13]  W. E. Lorensen,et al.  The collapsed cubic isoparametric element as a ingular element for crack probblems , 1978 .

[14]  S. L. Pu,et al.  Quadratic and Cubic Transition Elements , 1981 .

[15]  D. Rooke,et al.  The compendium of stress intensity factors , 1978, International Journal of Fracture.

[16]  I. Babuska,et al.  A‐posteriori error estimates for the finite element method , 1978 .

[17]  Roland Glowinski,et al.  An introduction to the mathematical theory of finite elements , 1976 .

[18]  W. Brown,et al.  Plane strain crack toughness testing of high strength metallic materials. , 1966 .

[19]  L. P. Harrop The optimum size of quarter‐point crack tip elements , 1982 .

[20]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[21]  R. S. Dunham,et al.  A contour integral computation of mixed-mode stress intensity factors , 1976, International Journal of Fracture.

[22]  I. Fried Condition of finite element matrices generated from nonuniform meshes. , 1972 .

[23]  R. Barsoum On the use of isoparametric finite elements in linear fracture mechanics , 1976 .

[24]  Richard H. Gallagher,et al.  The synthesis of near‐optimum finite element meshes with interactive computer graphics , 1980 .

[25]  Anthony R. Ingraffea,et al.  Numerical Modelling of Fracture Propagation , 1983 .

[26]  M. Isida Stress-Intensity Factors for the Tension of an Eccentrically Cracked Strip , 1966 .

[27]  Ad Bakker,et al.  An analysis of the numerical path dependence of the J-integral , 1983 .

[28]  D. Parks On the convergence of finite element meshes in the presence of singularities , 1979 .

[29]  T. F. Lehnhoff,et al.  Stress intensity factor evaluation using singular finite elements , 1982 .

[30]  A. R. Luxmoore,et al.  An assessment of crack tip singularity models for use with isoparametric elements , 1979 .

[31]  W. K. Wilson Stress intensity factors for deep cracks in bending and compact tension specimens , 1970 .

[32]  T. K. Hellen On the method of virtual crack extensions , 1975 .

[33]  Noboru Kikuchi,et al.  A method of grid optimization for finite element methods , 1983 .

[34]  R. Wait,et al.  Singular Isoparametric Finite Elements , 1977 .

[35]  M. Williams,et al.  On the Stress Distribution at the Base of a Stationary Crack , 1956 .

[36]  Harold Liebowitz,et al.  Crack border stress and displacement equations revisited , 1977 .

[37]  D. M. Tracey,et al.  Finite elements for determination of crack tip elastic stress intensity factors , 1971 .

[39]  Isaac Fried,et al.  Best Finite Elements Distribution around a Singularity , 1972 .